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a b s t r a c t

In this paper, we consider the eigenvalue variation for any perturbation of Hermitian
matrices, and we obtain two perturbation bounds. The first bound always improves
the existing bound, and the second bound also improves the existing one under a
suitable condition. A simple example is given for comparing these bounds.
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1. Introduction

Numerical analysis in eigenvalue problems of matrices has been being a hot topic in matrix computations
because of its applications such as engineering computations et al. Perturbation analysis for eigenvalues is
of significance since it needs to study the sensitivity for solving eigenvalue problems. The classical bounds
for the eigenpair perturbation are the Hoffman–Wielandt theorem for eigenvalues (see [1]) and the sinΘ

theorem for eigenspaces (see [2]), respectively. Recently, some perturbation bounds for eigenvalues have still
been studied; see e.g. [3–10]. In particular, some authors obtained the eigenvalue perturbation bounds for
the Hermitian matrices (e.g., see [11,12]). Here we consider a variation of eigenvalues for a Hermitian matrix.
First we introduce some notations.

Let Cm×n be the set of m×n complex matrices. By A∗ we denote the conjugate transpose of a matrix A.
The Frobenius norm of a matrices · is denoted by ∥ · ∥F . The spectrum of A is denoted by {λ1, . . . , λn}.

Let Ã be a matrix with Schur’s decomposition:

Ã = Ũ(Λ̃ + ∆)Ũ∗, (1.1)

where Λ̃ = diag(λ̃1, . . . , λ̃n) and ∆ is strictly upper triangular, and Ũ is unitary.
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The eigenvalue perturbation bound for the normal matrices is the Hoffman–Wielandt theorem (see [1]),
i.e., when both A and Ã are normal matrices, then there exists a permutation τ in {1, . . . , n} such that(

n∑
i=1

|λ̃τ(i) − λi|2
) 1

2

≤ ∥E∥F . (1.2)

If A is Hermitian, but its perturbed matrix Ã is arbitrary. The perturbation bound for eigenvalues is given
below (e.g., see the bound (4.42) in Chapter 4 of [13] or [14]): there exists a permutation τ in {1, . . . , n}
such that (

n∑
i=1

|λ̃τ(i) − λi|2
) 1

2

≤
√

2∥E∥F , (1.3)

and
√

2 is the best factor in (1.3). However, the bound (1.3) is independent of the quantity ∥Ã − Ã∗∥F , i.e.,
no matter how Ã∗ closes to Ã, this bound is the same. By this motivation, here we give some improvements
for the bound (1.3). The new bound can reduce to the one in (1.2) when the perturbation is still Hermitian,
also the new bound is sharper than the one in (1.3).

2. The bounds

Let M be an n×n matrix. By D(M), L(M) and U(M) we denote the diagonal part, strictly lower
triangular part and strictly upper triangular part of M , i.e., M = D(M) + L(M) + U(M). First we give
some lemmas, which will be used in the sequel.

Lemma 2.1. For any matrix Ã ∈ Cn×n with Schur’s decomposition (1.1) we have

∥∆∥F ≤ 1√
2

∥Ã − Ã∗∥F

and

∥∆∥F ≤
(

n3 − n

12

) 1
4
∥Ã∗Ã − ÃÃ∗∥

1
2
F .

Proof. By the decomposition (1.1) we have

∥Ã − Ã∗∥
2
F = ∥Λ̃ − Λ̃∗∥

2
F + ∥∆ − ∆∗∥2

F

≥ 2∥∆∥2
F ,

which implies the first inequality. The second one follows from Theorem 5.3 of [13].

Lemma 2.2. Let A be a Hermitian matrix, and Ã = A + E be a perturbed matrix of A with Schur’s
decomposition (1.1). Then we have

∥Ũ∗EŨ − ∆∥
2
F ≤ ∥E∥2

F +
√

2∥∆∥F ∥E∥F .

Proof. By E = Ã − A and the decomposition (1.1) we have

Ũ∗EŨ − ∆ = Λ̃ − Ũ∗AŨ. (2.4)
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