

Contents lists available at ScienceDirect

Applied Mathematics Letters

www.elsevier.com/locate/aml

Existence of non-trivial solutions for nonlinear fractional Schrödinger-Poisson equations

Kexue Li

School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, China

ARTICLE INFO

Article history: Received 3 January 2017 Received in revised form 30 March 2017 Accepted 31 March 2017 Available online 7 April 2017

Keywords: Fractional Schrödinger-Poisson equation Perturbation method Nontrivial solution

ABSTRACT

We study the nonlinear fractional Schrödinger-Poisson equation

$$\begin{cases} (-\Delta)^s u + u + \phi u = f(x, u), & \text{in } \mathbb{R}^3, \\ (-\Delta)^t \phi = u^2, & \text{in } \mathbb{R}^3, \end{cases}$$

where $s,t \in (0,1]$, 2t+4s>3. Under some assumptions on f, we obtain the existence of non-trivial solutions. The proof is based on the perturbation method and the mountain pass theorem.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we are concerned with the existence of non-trivial solutions for the following fractional Schrödinger-Poisson equation

$$\begin{cases} (-\Delta)^s u + u + \phi u = f(x, u), & \text{in } \mathbb{R}^3, \\ (-\Delta)^t \phi = u^2, & \text{in } \mathbb{R}^3, \end{cases}$$
 (1.1)

where $s, t \in (0,1], 2t + 4s > 3, (-\Delta)^s$ denotes the fractional Laplacian.

When s = t = 1, Eq. (1.1) reduces to a Schrödinger–Poisson equation, which describes system of identical charged particles interacting each other in the case where magnetic effects can be neglected [1,2]. If we only consider the first equation in (1.1) and assume that $\phi = 0$, then it reduces to a fractional Schrödinger equation, which is a fundamental equation in fractional quantum mechanics [3,4].

Fractional Schrödinger-Poisson equations have attracted some attention in recent years. Wei [5] studied the existence of infinitely many solutions for the following equation

$$\begin{cases} (-\Delta)^s u + V(x)u + \phi u = f(x, u), & \text{in } \mathbb{R}^3, \\ (-\Delta)^s \phi = \gamma_\alpha u^2, & \text{in } \mathbb{R}^3, \end{cases}$$
 (1.2)

 $E\text{-}mail\ address: \ kexueli@gmail.com.$

where $s \in (0,1]$, γ_{α} is a positive constant. Teng [6] studied the existence of ground state solutions for the system

$$\begin{cases} (-\Delta)^s u + V(x)u + \phi u = \mu |u|^{q-1} u + |u|^{2_s^* - 2} u, & \text{in } \mathbb{R}^3, \\ (-\Delta)^t \phi = u^2, & \text{in } \mathbb{R}^3, \end{cases}$$
(1.3)

where $\mu \ge 0$, $1 < q < 2_s^* - 1 = \frac{3+2s}{3-2s}$, $s, t \in (0,1)$, 2t + 2s > 3. Zhang [7] considered the existence of positive solutions for the equation

$$\begin{cases} (-\Delta)^s u + \lambda \phi u = g(u), & \text{in } \mathbb{R}^3, \\ (-\Delta)^t \phi = \lambda u^2, & \text{in } \mathbb{R}^3, \end{cases}$$
 (1.4)

where $s, t \in [0, 1], g$ is a nonlinearity of Berestycki–Lions type.

Recently, some authors proposed a new approach called perturbation method to study the quasilinear elliptic equations, see [8]. The idea is to get the existence of critical points of the perturbed energy functional I_{λ} for $\lambda > 0$ small and then taking $\lambda \to 0$ to obtain solutions of original problems. Very recently, Feng [9] used the perturbation method to study the Schrödinger–Poisson equation

$$\begin{cases}
-\Delta u + u + \phi u = f(x, u), & \text{in } \mathbb{R}^3, \\
(-\Delta)^{\alpha/2} \phi = u^2, & \lim_{|x| \to \infty} \phi(x) = 0, & \text{in } \mathbb{R}^3,
\end{cases}$$
(1.5)

where $\alpha \in (1,2]$. Under some conditions, the problem (1.5) possesses at least a nontrivial solution.

We point out that when s=1 and $t \in (\frac{1}{2},1]$, the problem (1.1) boils down to (1.5). From the assumptions about the potential V in [5], it is obvious that V is not a constant, we cannot use the similar approach as in [5] to study the problem (1.1). In [7], the nonlinear term g in problem (1.4) is required to be $C^1(\mathbb{R}, \mathbb{R})$, we do not need this condition here since the perturbed method is exploited. The main result of this paper is described as follows.

Theorem 1.1. Suppose f satisfies the following conditions:

(A1) $f \in C(\mathbb{R}^3 \times \mathbb{R}, \mathbb{R})$, for every $x \in \mathbb{R}^3$ and $u \in \mathbb{R}$, there exist constants $C_1 > 0$ and $p \in (2, 2_s^*)$ such that

$$|f(x,u)| \le C_1(|u| + |u|^{p-1}),$$

where $2_s^* = \frac{6}{3-2s}$ is the fractional critical Sobolev exponent;

- (A2) $f(x, u) = o(|u|), |u| \to 0, uniformly on \mathbb{R}^3$;
- (A3) there exists $\mu > 4$ such that

$$0 < \mu F(x, u) < u f(x, u)$$

holds for every $x \in \mathbb{R}^3$ and $u \in \mathbb{R} \setminus \{0\}$, where $F(x,u) = \int_0^u f(x,s)ds$; Then problem (1.1) has at least a nontrivial solution.

The paper is organized as follows. In Section 2, we present some preliminary results. In Section 3, we will prove Theorem 1.1.

2. Preliminaries

For $p \in [1, \infty)$, we denote by $L^p(\mathbb{R}^3)$ the usual Lebesgue space with the norm $||u||_p = \left(\int_{\mathbb{R}^3} |u|^p dx\right)^{\frac{1}{p}}$. We recall some definitions of fractional Sobolev spaces and the fractional Laplacian, for more details, we refer to [10]. The fractional Sobolev space $H^s(\mathbb{R}^3)$ is defined as follows

$$H^{s}(\mathbb{R}^{3}) = \left\{ u \in L^{2}(\mathbb{R}^{3}) : \int_{\mathbb{R}^{3}} (1 + |\xi|^{2s}) |\mathcal{F}u(\xi)|^{2} d\xi < \infty \right\}$$

Download English Version:

https://daneshyari.com/en/article/5471680

Download Persian Version:

https://daneshyari.com/article/5471680

<u>Daneshyari.com</u>