Positive solutions of nonlinear delayed differential equations with impulses

Josef Diblík
Brno University of Technology, Faculty of Civil Engineering, Brno, Czech Republic

A R T I C L E I N F O

Article history:

Received 8 February 2017
Received in revised form 3 April 2017
Accepted 3 April 2017
Available online 12 April 2017

Keywords:

Positive solution
Large time behavior
Delayed differential equation
Impulse

Abstract

The paper is concerned with the long-term behavior of solutions to scalar nonlinear functional delayed differential equations $$
\dot{y}(t)=-f\left(t, y_{t}\right), \quad t \geq t_{0}
$$

It is assumed that $f:\left[t_{0}, \infty\right) \times \mathcal{C} \mapsto \mathbb{R}$ is a continuous mapping satisfying a local Lipschitz condition with respect to the second argument and $\mathcal{C}:=C([-r, 0], \mathbb{R})$, $r>0$ is the Banach space of continuous functions. The problem is solved of the existence of positive solutions if the equation is subjected to impulses $y\left(t_{s}^{+}\right)=$ $b_{s} y\left(t_{s}\right), s=1,2, \ldots$, where $t_{0} \leq t_{1}<t_{2}<\cdots$ and $b_{s}>0, s=1,2, \ldots$ A criterion for the existence of positive solutions on $\left[t_{0}-r, \infty\right)$ is proved and their upper estimates are given. Relations to previous results are discussed as well.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction and the problem considered

Let $C([a, b], \mathbb{R})$ where $a, b \in \mathbb{R}, a<b$ be the Banach space of continuous functions mapping $[a, b]$ into \mathbb{R}. For $a:=-r<0$ and $b:=0$, we denote this space by \mathcal{C}, that is, $\mathcal{C}:=C([-r, 0], \mathbb{R})$. Let $\sigma \in \mathbb{R}, A \geq 0$, $y \in C([\sigma-r, \sigma+A], \mathbb{R})$. For each $t \in[\sigma, \sigma+A], y_{t} \in \mathcal{C}$ is defined by $y_{t}(\theta)=y(t+\theta), \theta \in[-r, 0]$.

In the paper, we investigate the long-term behavior of solutions of nonlinear functional delayed differential equations

$$
\begin{equation*}
\dot{y}(t)=-f\left(t, y_{t}\right), \quad t \geq t_{0} \tag{1}
\end{equation*}
$$

where $f:\left[t_{0}, \infty\right) \times \mathcal{C} \mapsto \mathbb{R}, t_{0} \in \mathbb{R}$, is a continuous mapping that satisfies a local Lipschitz condition with respect to the second argument.

Let $\sigma \geq t_{0}$. In accordance with the traditional definition (we refer, e.g., to [1]), a function $y:[\sigma-r, \sigma+A) \rightarrow$ \mathbb{R}, where $A>0$, is called a solution to (1) on $[\sigma-r, \sigma+A)$ if y is continuous on $[\sigma-r, \sigma+A)$, continuously differentiable on $[\sigma, \sigma+A$) (whenever it is necessary, we will assume that the derivatives in (1) are right-sided),

[^0]satisfies (1) for every $t \in[\sigma, \sigma+A)$ and $\left(t, y_{t}\right) \in\left[t_{0}, \infty\right) \times \mathcal{C}$. For a given $\sigma \in \mathbb{R}$ and $\varphi \in \mathcal{C}$, we say that $y(\sigma, \varphi)$ is a solution of (1) through $(\sigma, \varphi) \in\left[t_{0}, \infty\right) \times \mathcal{C}$ if there is an $A>0$ such that $y(\sigma, \varphi)$ is a solution of (1) on $[\sigma-r, \sigma+A)$ and $y_{\sigma}(\sigma, \varphi) \equiv \varphi$. In view of the above conditions, each element $(\sigma, \varphi) \in\left[t_{0}, \infty\right) \times \mathcal{C}$ determines a unique solution $y(\sigma, \varphi)$ of (1) through $(\sigma, \varphi) \in\left[t_{0}, \infty\right) \times \mathcal{C}$ on its maximal interval of existence and $y(\sigma, \varphi)$ depends continuously on initial data [1].

The paper particularly considers the problem of the existence of positive solutions to nonlinear functional delayed differential equation (1) on $\left[t_{0}-r, \infty\right)$ subjected to impulses

$$
\begin{equation*}
y\left(t_{s}^{+}\right)=b_{s} y\left(t_{s}\right), \quad s=1,2, \ldots, \tag{2}
\end{equation*}
$$

where $t_{0} \leq t_{1}<t_{2}<\cdots, \lim _{s \rightarrow \infty} t_{s}=\infty, y\left(t_{s}^{+}\right)=\lim _{\varepsilon \rightarrow 0, \varepsilon>0} y\left(t_{s}+\varepsilon\right)$ and $b_{s}>0, s=1,2, \ldots$. The number of impulses can be only finite as well. If this is the case, it is sufficient to set $b_{s}=1, s \geq s_{0}$ for sufficiently large s_{0}. Denote $\mathcal{I}_{0}=\left\{t_{0}, t_{1}, \ldots\right\}, \mathcal{I}=\left\{t_{1}, t_{2}, \ldots\right\}$. A solution of the problem (1), (2) is defined as follows. A function $y:\left[t_{0}-r, \infty\right) \rightarrow \mathbb{R}$, is called a solution of the problem (1), (2) on $\left[t_{0}-r, \infty\right)$ if y is continuous on $\left[t_{0}-r, \infty\right) \backslash \mathcal{I}$, continuously differentiable on $\left[t_{0}-r, \infty\right) \backslash \mathcal{I}_{0}$, satisfies (1) on $\left[t_{0}, \infty\right) \backslash \mathcal{I}_{0}$, and (2) holds. The main difference of this definition from the classical one (except for taking into account possible discontinuities at points of the set \mathcal{I}) is that continuous differentiability rather than continuity is assumed on $\left[t_{0}-r, t_{0}\right.$). Later (see Lemma 1), we will prove that such a property is deduced from the method used. A solution y of $(1),(2)$ on $\left[t_{0}-r, \infty\right)$ is positive if $y(t)>0, t \in\left[t_{0}-r, \infty\right)$.

The problem of the existence of positive solutions to delayed differential equations is a classical one. For results on the existence of positive solutions to impulsive equations, we refer, e.g., to books [2-4], papers [5-9] and to the references therein. Rudiments of the theory of impulsive equations can be found, in addition to the above books, in [10-12].

The paper is organized as follows. In part 2, a criterion for the existence of positive solutions to the problem (1), (2) on $\left[t_{0}-r, \infty\right)$ and an upper estimation of such solutions are given. Relations with the previous results are discussed. The proofs of the statements form part 3 .

1.1. The idea of approach used

Let us explain the underlying idea of our reasoning. We will look for a positive solution of the problem (1), (2) in the form

$$
\begin{equation*}
y(t)=\Lambda(t):=k B\left(t, t_{0}\right) \exp \left(-\int_{t_{0}-r}^{t} \lambda(s) d s\right), \quad t \in\left[t_{0}-r, \infty\right) \tag{3}
\end{equation*}
$$

where $B\left(t, t_{0}\right):=\prod_{t_{0}-r \leq t_{i}<t} b_{i}$ if at least one $t_{i} \in\left[t_{0}-r, t\right)$, otherwise we set $B\left(t, t_{0}\right):=1, k>0$ is a constant and $\lambda:\left[t_{0}-r, \infty\right) \rightarrow \mathbb{R}$ is a continuous function everywhere except for points $t \in \mathcal{I}_{0}$ where it can have first-type discontinuities. Since $B^{\prime}\left(t, t_{0}\right)=0$ if $t \in\left[t_{0}-r, \infty\right) \backslash \mathcal{I}_{0}$,

$$
\begin{equation*}
y^{\prime}(t)=-\lambda(t) \Lambda(t), \quad t \in\left[t_{0}-r, \infty\right) \backslash \mathcal{I}_{0} . \tag{4}
\end{equation*}
$$

Substitute expressions (3) and (4) for y and y^{\prime} in (1). Then, the function λ must satisfy an integro-functional equation

$$
\begin{equation*}
\lambda(t)=(\Lambda(t))^{-1} f\left(t, \Lambda_{t}\right), \quad t \in\left[t_{0}, \infty\right) \backslash \mathcal{I}_{0} . \tag{5}
\end{equation*}
$$

In addition, y satisfies (2) since, for $s=1,2, \ldots$,

$$
y\left(t_{s}^{+}\right)=\Lambda\left(t_{s}^{+}\right)=k\left(\prod_{i=1}^{s} b_{i}\right) \exp \left(-\int_{t_{0}-r}^{t_{s}} \lambda(s) d s\right)
$$

https://daneshyari.com/en/article/5471682

Download Persian Version:
https://daneshyari.com/article/5471682

Daneshyari.com

[^0]: E-mail address: diblik.j@fce.vutbr.cz.

