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DIFFERENTIAL EQUATIONS WITH SEVERAL
NON-MONOTONE ARGUMENTS: AN OSCILLATION RESULT

G. E. CHATZARAKIS AND H. PÉICS

Abstract. This paper is concerned with the oscillatory behavior of �rst-order
di¤erential equations with several non-monotone delay arguments and non-
negative coe¢ cients. A su¢ cient condition, involving lim sup, which guaran-
tees the oscillation of all solutions is established. Also, an example illustrating
the signi�cance of the result is given.
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1. INTRODUCTION

In this paper we consider the di¤erential equation with several non-monotone
delay arguments

x0(t) +
Xm

i=1
pi(t)x (� i(t)) = 0; t � 0, (1.1)

where pi, 1 � i � m, are functions of nonnegative real numbers, and � i, 1 � i � m,
are Lebesgue measurable functions satisfying

� i(t) < t, t � 0 and lim
t!1

� i(t) =1, 1 � i � m. (1.2)

In addition, we consider the initial condition for (1.1)

x(t) = '(t); t � 0; (1.3)

where ' : (�1; 0]! R is a bounded Borel measurable function.
A solution of (1.1), (1.3) is an absolutely continuous on [0;1) function satisfying

(1.1) for all t � 0 and (1.3) for all t � 0.
A solution x(t) of (1.1) is oscillatory, if it is neither eventually positive nor

eventually negative. If there exists an eventually positive or an eventually negative
solution, the equation is nonoscillatory. An equation is oscillatory if all its solutions
oscillate.
The problem of establishing su¢ cient conditions for the oscillation of all solutions

of equation (1.1) has been the subject of many investigations. See, for example,
[1�3, 5�12] and the references cited therein. For the general oscillation theory of
di¤erential equations the reader is referred to the monograph [4].
In 1978 Ladde [10] and in 1982 Ladas and Stavroulakis [9] proved that if

lim inf
t!1

Z t

�(t)

Xm

i=1
pi(s)ds >

1

e
; (1.4)

where �(t) = max1�i�mf� i(t)g; then all solutions of (1.1) oscillate.
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