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a b s t r a c t

The root-finding problem of a univariate nonlinear equation is a fundamental and
long-studied problem, and has wide applications in mathematics and engineering
computation. This paper presents a fast and robust method for computing the
simple root of a nonlinear equation within an interval. It turns the root-finding
problem of a nonlinear equation into the solution of a set of linear equations, and
explicit formulae are also provided to obtain the solution in a progressive manner.
The method avoids the computation of derivatives, and achieves the convergence
order 2n−1 by using n evaluations of the function, which is optimal according to
Kung and Traub’s conjecture. Comparing with the prevailing Newton’s methods, it
can ensure the convergence to the simple root within the given interval. Numerical
examples show that the performance of the derived method is better than those of
the prevailing methods.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Finding the roots of a nonlinear equation f(t) = 0 is a common and important problem in mathematics
and engineering computation. Many modified iterative methods have been developed to improve the local
order of convergence, including Newton, Halley or Ostrowski’s methods. In an iterative step, the convergence
order p can be improved by increasing the number n of functional evaluations (FE). The balance between
p and n is measured by using p1/n, which is called an efficiency index [1–10]. It is conjectured that the
order of convergence of any multi-point method cannot exceed the optimal bound 2n−1 [11]. Some classical
methods, e.g., Newton’s method, Newton–Secant method and Ostrowski’s method, have efficiency indices of
21/2 ≈ 1.414, 31/3 ≈ 1.442 and 41/3 ≈ 1.587, respectively, and they usually need evaluations of its derivatives.
In [12], Li, Mu, Ma and Wang presented a method of sixteen convergence order, whose efficiency index
is 161/6 ≈ 1.587. Some optimal methods with eighth convergence order have also been developed, whose
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efficiency index is 81/4 ≈ 1.682 [13–15]. For cases having one root within an interval, the above methods
still start from an initial value from one side, and their convergence is sensitive to the selection of the initial
value. In some worst cases, the iterative methods cannot converge to the proper simple root, even with a
good initial value [16] (see also Example 3 in Section 3 for more details). Chen et al. provided an efficient
method based on progressive interpolation, which starts from an interval bounding the unique simple root,
and achieves convergence order 3 · 2n−3 with n FEs and no derivative evaluations [16]. It ensures that the
roots of progressive interpolation polynomials are within the given interval, and converge to the simple root.

This paper focuses on how to compute the simple root t⋆ of a nonlinear equation within an interval [a, b].
It turns the root-finding problem of the given nonlinear equation f(t) into those of a sequence of linear
equations. It ensures that each linear equation li(t) has a root ti ∈ [a, b] with explicit formulae, where ti is
well-approximated to t⋆ in a progressive way, i = 3, 4, . . . . It can ensure the convergence to the simple root
with convergence order 2n−1 by using n FEs without derivative evaluations, which is higher than that of
the method in [16] and is optimal in the conjecture of [11] (see also Table 1). Numerical examples show
that the performance of the proposed method is better than those of prevailing methods.

2. The main result

Note that a root t⋆ of f(t) should be a simple root of f(t)/f ′(t). Without loss of generality, we suppose
that the simple root t⋆ is the unique root of f(t) within [a, b], and h = b − a. In cases with only one given
initial value x0, one can obtain x1 such that |x1 − t⋆| < |x0 − x⋆|/2 by using some iterative methods,
such as the Newton’s method, and can thus obtain an interval bounding t⋆. The details are as follows. If
f(x0) · f(x1) < 0, x0 and x1 already bound the simple root t⋆; otherwise, we have that 2x1 − x0 and x1
bound t⋆.

In this paper, we discuss how to compute the simple root t⋆ ∈ [a, b] of f(t), where f(a) · f(b) < 0. We
want to find a sequence of linear equations which have roots well-approximating to t⋆. Let t1 = a and t2 = b.
Let the first linear equation l3(t) be the one interpolating f(t) at two points t1 and t2, which is trivial to
compute its root t3. Let

li(t) = t − ti

i−1∑
j=2

αi,jtj−2
, i = 3, 4, . . . , n, (1)

where the i − 1 unknowns, i.e., ti and αi,j , j = 2, 3, . . . , i − 1, are determined by

li(tj) = f(tj), j = 1, 2, . . . , i − 1. (2)

Note that the denominator of li(t) should not be zero within [a, b], and li(t) = 0 is equivalent to a linear
equation with root ti. On the other hand, combining the assumption that f(a) ·f(b) < 0 and the constraints
that li(a) = f(a) and li(b) = f(b), li(t) must have the root ti. We introduce Theorem 3.5.1 in Page 67,
Chapter 3.5 of [17] as follows.

Theorem 1. Let w0, w1, . . . , wr be r+1 distinct points in [a, b], and n0, . . . , nr be r+1 integers ≥ 0. Let
N = n0 + · · · + nr + r. Suppose that g(t) is a polynomial of degree N such that

g(i)(wj) = f (i)(wj), i = 0, . . . , nj , j = 0, . . . , r.

Then there exists ξ1(t) ∈ [a, b] such that

f(t) − g(t) = f (N+1)(ξ1(t))
(N + 1)!

r∏
i=0

(t − wi)ni . □
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