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a b s t r a c t

This paper focuses on providing the high order algorithms for the space–time tem-
pered fractional diffusion-wave equation. The designed schemes are unconditionally
stable and have the global truncation error O(τ2 + h2), being theoretically proved
and numerically verified.
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1. Introduction

Tempered anomalous diffusion describes the very slow transition from anomalous to normal diffusion,
and it has many applications in physical, biological, and chemical processes. In some cases, the transition
even does not appear at all in the observation time because of the finite lifespan of the particles or the
finite observation time of the experimentalist [1]. This paper considers the numerical methods for the
macroscopic model describing this kind of phenomena. More concretely, we study a second-order accurate
numerical method in both space and time for the integro-differential equation whose prototype is, for
1 < α, γ ≤ 2, λ ≥ 0,

∂

∂t
u(x, t) = Iγ−1,λ

t ∇α
xu(x, t) = 1

Γ (γ − 1)

∫ t

0
(t − τ)γ−2

e−λ(t−τ)∇α
xu(x, τ)dτ, (1.1)

with the initial condition u(x, 0) = u0(x), x ∈ Ω = (a, b) and the homogeneous Dirichlet boundary
conditions, characterizing the propagation of wave with the tempered power law decay. Here the tempered
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fractional integral Iβ,λ
t with β = γ − 1 > 0 is defined as [2,3]

Iβ,λ
t u(x, t) = 1

Γ (β)

∫ t

0
(t − τ)β−1

e−λ(t−τ)u(x, τ)dτ, t > 0. (1.2)

The Riesz fractional derivative with α ∈ (1, 2), is defined as [4]

∇α
xu(x, t) = −κα (aDα

x + xD
α
b ) u(x, t) with κα = 1

2 cos(απ/2) , (1.3)

aDα
x u(x, t) = 1

Γ (2 − α)
∂2

∂x2

∫ x

a

(x − ξ)1−α
u(ξ, t)dξ, xDα

b u(x, t) = 1
Γ (2 − α)

∂2

∂x2

∫ b

x

(ξ − x)1−α
u(ξ, t)dξ.

It can be noted that, if λ = 0, (1.1) reduces to the following space–time fractional diffusion-wave
equation [5],

cDγ
t u(x, t) = ∇α

xu(x, t) for 1 < α, γ ≤ 2.

Numerical methods for the time discretization of (1.1) with λ = 0, α = 2 have been proposed by
various authors [6–9]. For example, Cuesta (2006) et al. derive the second-order error bounds of the time
discretization in a Banach space with ∇2

x as a sectorial operator [6]; and Yang (2014) et al. obtain the
second-order convergence schemes with 1 ≤ γ ≤ 1.71832 [9]. McLean and Mustapha (2007) study the
Crank–Nicolson scheme for the time discretization with the non-uniform grid [10].

The space–time tempered fractional diffusion-wave equation of (1.1) with λ = 0 are discussed in [11,12]
and its numerical solutions are designed in [13,14]. However, it seems that achieving a second-order accurate
scheme for (1.1) is not an easy task. This paper focuses on providing effective and highly accurate numerical
algorithms for (1.1). The designed schemes are unconditionally stable and have the global truncation error
O(τ2 + h2), being theoretically proved and numerically verified. It can be easily extended to the problems
discussed in [9,13,14].

The rest of the paper is organized as follows. The next section proposes our second-order accurate scheme
for (1.1). In Section 3, we carry out a detailed stability and convergence analysis with the second order
accuracy in both time and space directions for the derived schemes. To show the effectiveness of the schemes,
we perform the numerical experiments to verify the theoretical results in Section 4. The paper is concluded
with some remarks in the last section.

2. High order schemes for the space–time tempered fractional diffusion-wave equation

Let the mesh points xi = a+ ih for i = 0, 1, . . . , M , and tn = nτ for n = 0, 1, . . . , N , where h = (b−a)/M

and τ = T/N are the uniform space stepsize and time steplength, respectively. Denote un
i as the numerical

approximation to u(xi, tn). Here, we utilize the second-order formula [15,16] to approximate the Riesz
fractional derivative (1.3), that is

∇α
xu(x, t)|x=xi

= − κα

Γ (4 − α)hα

M−1∑
j=1

wα
i,ju(xj , t) + O(h2) (2.1)

with i = 1, . . . , M − 1, where

wα
i,j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
wα

i−j+1, j < i − 1,
wα

0 + wα
2 , j = i − 1,

2wα
1 , j = i,

wα
0 + wα

2 , j = i + 1,
wα

j−i+1, j > i + 1,

and wα
m =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, m = 0,
−4 + 23−α, m = 1,
6 − 25−α + 33−α, m = 2,
(m + 1)3−α − 4m3−α + 6(m − 1)3−α

− 4(m − 2)3−α + (m − 3)3−α, m ≥ 3.



Download	English	Version:

https://daneshyari.com/en/article/5471710

Download	Persian	Version:

https://daneshyari.com/article/5471710

Daneshyari.com

https://daneshyari.com/en/article/5471710
https://daneshyari.com/article/5471710
https://daneshyari.com/

