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Abstract

In a class of systems of balance laws in several space dimensions, we prove the stability of solutions
with respect to variations in the flow and in the source. This class comprises a model describing
the cutting of metal plates by means of laser beam.
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1. Introduction

Following [3], we consider this system of n balance laws in several space dimensions:
{

∂tui + divx ϕi(t, x, ui, ϑ ∗ u) = Φi(t, x, ui, ϑ ∗ u)
ui(0, x) = ūi(x)

i = 1, . . . , n . (1)

Here, t ∈ [0,+∞[ is time, x ∈ RN is the space coordinate and u1, . . . , un are the unknowns. The
function ϑ is a smooth function defined in RN attaining values in Rm×n, so that

ϑ ∈ C2
c(RN ;Rm×n) ,

(
ϑ ∗ u(t)

)
(x) =

∫

RN

ϑ(x− ξ) u(t, ξ) dξ ,
(
ϑ ∗ u(t)

)
(x) ∈ Rm .

Requirements on the flows ϕi, on the sources Φi and on the initial data ūi ensuring the well
posedness of (1) are provided below.

A key property of system (1) is that the equations are coupled only through the nonlocal
convolution term ϑ∗u. It is this feature that allows a well posedness and stability theory, although
we are dealing with systems of balance laws in several space dimensions.

The driving example motivating (1) is a new model for the cutting of metal plates by means of
a laser beam, presented in [3, Section 3], see also [2, 4]. However, (1) also comprises the model [7],
see also [3, Section 4], devoted to the dynamics on a conveyor belt, as well as several crowd
dynamics models, e.g. [1, 6, 8]. Theorem 2.3 below, applied to each of these cases, provides the
stability of solutions with respect to perturbations of fluxes and sources.

2. Results

Throughout, gradx f and divx f denote the gradient and the divergence of f with respect to

the space variable x ∈ RN . Throughout, we fix the non trivial time interval Î = [0, T̂ ]. For any
k > 0, we also denote Uk = [−k, k] and Umk = [−k, k]m.

Recall the definition of solution to (1), based on [9, Definition 1], and the well posedness result
obtained in [3].

Definition 2.1 ([3, Definition 2.1]). Let ū ∈ L∞(RN ,Rn). A map u : Î → L∞(RN ,Rn) is a

solution on Î to (1) with initial datum ū if, for i = 1, . . . , n, setting for all z ∈ R

ϕ̃i(t, x, z) = ϕi
(
t, x, z, (ϑ ∗ u)(t, x)

)
and Φ̃i(t, x, z) = Φi

(
t, x, z, (ϑ ∗ u)(t, x)

)
,
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