

Contents lists available at ScienceDirect

Applied Mathematics Letters

www.elsevier.com/locate/aml

Norm continuity of solution semigroups of a class of neutral functional differential equations with distributed delay

Kai Liu*

College of Mathematical Sciences, Tianjin Normal University, Tianjin, 300387, PR China Department of Mathematical Sciences, School of Physical Sciences, The University of Liverpool, Liverpool, L69 7ZL, UK

ARTICLE INFO

Article history:
Received 2 November 2016
Received in revised form 15 January 2017
Accepted 15 January 2017
Available online 16 February 2017

Keywords: Semigroup Norm continuity of C_0 -semigroup Functional differential equation of neutral type

ABSTRACT

In this note, we shall consider the norm continuity of a class of solution semigroups associated with linear functional differential equations of neutral type with time lag r>0 in Hilbert spaces. The norm continuity plays an important role in the analysis of asymptotic stability of the system under consideration by means of spectrum approaches. We shall show that for a square integrable neutral delay term and an unbounded infinitesimal generator A multiplied by a square integrable weight function in the distributed delay term, the associated solution semigroup of the system is norm continuous at every t>r.

Crown Copyright © 2017 Published by Elsevier Ltd. All rights reserved.

1. Introduction

For any Banach spaces X and Y, we always denote by $\mathscr{L}(X,Y)$ the space of all bounded, linear operators from X to Y. If X=Y, we simply write $\mathscr{L}(X,X)$ by $\mathscr{L}(X)$. Let V be a separable Hilbert space and V^* be its dual space. Suppose that $a:V\times V\to \mathbb{R}$ is a bounded bilinear form satisfying the so-called Gårding's inequality $a(x,x)\leq -\alpha\|x\|_V^2, \ x\in V$, for some constant $\alpha>0$. Let A be a linear operator defined by this form through $a(x,y)=\langle x,Ay\rangle_{V,V^*}, x,y\in V$, where $\langle\cdot,\cdot\rangle_{V,V^*}$ is the duality pair between V and V^* . Then $A\in\mathscr{L}(V,V^*)$ and A generates a C_0 -semigroup $e^{tA},\ t\geq 0$, on V^* such that $e^{tA}:V^*\to V$ for each t>0. We introduce the Lions interpolation Hilbert space (see Tanabe [1]) $H=(V,V^*)_{1/2,2}$ between V and V^* , which is given by $H=\{x\in V^*:\int_0^\infty\|Ae^{tA}x\|_{V^*}^2dt<\infty\}$ with its inner product

$$\langle x, y \rangle_H := \langle x, y \rangle_{V^*} + \int_0^\infty \langle Ae^{tA}x, Ae^{tA}y \rangle_{V^*} dt, x, \ y \in H.$$
 (1.1)

E-mail address: k.liu@liverpool.ac.uk.

^{*} Correspondence to: Department of Mathematical Sciences, School of Physical Sciences, The University of Liverpool, Liverpool, L69 7ZL, UK.

We identify the dual H^* of H with H, then it is easy to see that $V \hookrightarrow H = H^* \hookrightarrow V^*$ where the embedding \hookrightarrow is dense and continuous with $\|x\|_H^2 \le \nu \|x\|_V^2$, $x \in V$, for some constant $\nu > 0$. Moreover, the semigroup e^{tA} , $t \ge 0$, generated by A is bounded and analytic on both H and V^* such that

$$||e^{tA}||_{\mathscr{L}(H)} \le 1, ||e^{tA}||_{\mathscr{L}(V^*)} \le C, t \ge 0,$$
 (1.2)

for some constant C > 0, and for any $T \ge 0$, there is a continuous embedding

$$L^{2}([0,T],V) \cap W^{1,2}([0,T],V^{*}) \subset C([0,T],H)$$
(1.3)

where $W^{1,2}([0,T],V^*)$ is the standard Sobolev space (see [2]).

Let r > 0 and $\mathcal{H} = H \times L^2([-r, 0], V)$. Consider a retarded functional differential equation with distributed delay,

$$\begin{cases} dy(t) = Ay(t)dt + \int_{-r}^{0} \beta(\theta)Ay(t+\theta)d\theta, t \ge 0, \\ y(0) = \phi_0, \ y(\theta) = \phi_1(\theta), \ \theta \in [-r, 0], \ \phi = (\phi_0, \phi_1) \in \mathcal{H}, \end{cases}$$
(1.4)

where $\beta \in L^2([-r,0],\mathbb{C})$ and \mathbb{C} is the space of all complex numbers. Note that since $\phi_1 \in L^2([-r,0],V)$, it generally does not make sense to talk about $\phi_0 = \phi_1(0)$ unless ϕ_1 satisfies more regular properties, e.g., ϕ_1 is a continuous function. As is well known, for any $\phi \in \mathcal{H}$ there exists a unique strong solution $y = y(t,\phi)$, $t \geq -r$, to (1.4). In particular, one can introduce in association with this solution a C_0 -semigroup $\mathcal{S}(t)$, $t \geq 0$, on \mathcal{H} by $\mathcal{S}(t)\phi = (y(t,\phi),y_t(\phi))$ for any $\phi \in \mathcal{H}$, where $y_t(\phi)(\theta) := y(t+\theta,\phi)$, $\theta \in [-r,0]$. As regards norm continuity of $\mathcal{S}(\cdot)$, i.e., $\mathcal{S}(\cdot):[0,\infty)\to \mathcal{L}(\mathcal{H})$ is continuous in the uniform operator topology, Di Blasio et al. [3] have proved that if the weight function $\beta(\cdot)$ in the distributed delay term of (1.4) satisfies $\beta(\cdot) \in W^{1,2}([-r,0],\mathbb{C})$, then the associated solution semigroup $\mathcal{S}(t)$, $t \geq 0$, is a differentiable (thus, norm continuous) semigroup for t > r. Subsequently, Jeong in [4] has shown that if $\beta(\cdot)$ is Hölder continuous, i.e., for any $\theta, \tau \in [-r,0]$, $|\beta(\theta)-\beta(\tau)| \leq C|\theta-\tau|^{\kappa}$, C>0, $\kappa \in (0,1]$, then the solution semigroup $\mathcal{S}(t)$ is norm continuous for t>3r. In 2002, Mastinšek [5] further improved their results to obtain that when $\beta(\cdot) \in L^2([-r,0],\mathbb{C})$, the solution semigroup $\mathcal{S}(t)$, $t \geq 0$, is norm continuous for t > r.

In this work, we shall generalize the above case to consider the norm continuity of a class of neutral functional differential equations of the form,

$$\begin{cases}
d\left(y(t) - \int_{-r}^{0} D(\theta)y(t+\theta)d\theta\right) = A\left(y(t) - \int_{-r}^{0} D(\theta)y(t+\theta)d\theta\right)dt + \int_{-r}^{0} \beta(\theta)Ay(t+\theta)d\theta dt, t \ge 0, \\
y(0) = \phi_0 + \int_{-r}^{0} D(\theta)\phi_1(\theta)d\theta, \ y(\theta) = \phi_1(\theta), \ \theta \in [-r, 0], \ \phi = (\phi_0, \phi_1) \in \mathcal{H},
\end{cases}$$
(1.5)

where $D(\cdot) \in L^2([-r,0], \mathcal{L}(V))$ and $\beta(\cdot) \in L^2([-r,0],\mathbb{C})$. It was shown in Liu [6] that for each $\phi = (\phi_0, \phi_1) \in \mathcal{H}$, there exists a unique strong solution $y = y(t,\phi)$, $t \geq 0$, to Eq. (1.5) and for any $T \geq 0$, the solution y satisfies

$$||y||_{L^{2}([0,T],V)} + ||y||_{W^{1,2}([0,T],V^{*})} \le C(T)||\phi||_{\mathcal{H}}, \tag{1.6}$$

for some number C(T) > 0 which depends on $T \ge 0$. In association with this solution y to (1.5), it was further shown (see [6]) that one can introduce a C_0 -semigroup S(t), $t \ge 0$, of (1.5) on \mathcal{H} given by

$$S(t)\phi = \left(y(t,\phi) - \int_{-r}^{0} D(\theta)y(t+\theta,\phi)d\theta, y_t(\phi)\right), \quad t \ge 0, \phi \in \mathcal{H}.$$
(1.7)

In this short note, we shall establish the following result which will play an important role in the stability analysis of the system (1.5) (see, e.g., [3]).

Download English Version:

https://daneshyari.com/en/article/5471733

Download Persian Version:

https://daneshyari.com/article/5471733

<u>Daneshyari.com</u>