Accepted Manuscript

One-dimensional model of a suspension bridge: revision of uniqueness results

Gabriela Holubová, Jakub Janoušek

PII: S0893-9659(17)30091-5
DOI: http://dx.doi.org/10.1016/j.aml.2017.03.011
Reference: AML 5209

To appear in: Applied Mathematics Letters
Received date: 1 February 2017
Revised date: 14 March 2017
Accepted date: 14 March 2017

Please cite this article as: G. Holubová, J. Janoušek, One-dimensional model of a suspension bridge: revision of uniqueness results, Appl. Math. Lett. (2017), http://dx.doi.org/10.1016/j.aml.2017.03.011

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

One-Dimensional Model of a Suspension Bridge:
 Revision of Uniqueness Results

Gabriela Holubová, Jakub Janoušek
Department of Mathematics and NTIS, Faculty of Applied Sciences, University of West Bohemia, Univerzitní 8, 30614 Plzeñ, Czech Republic

Abstract

This paper brings a revision of the so far known uniqueness result for a one-dimensional damped model of a suspension bridge. Using standard techniques, however with finer arguments, we provide a significant improvement and extension of the allowed interval for the stiffness parameter.

Keywords: suspension bridge, beam equation, unique weak solution
2000 MSC: 35B10, 35D05, 70K30

1. Introduction

We consider a nonlinear one-dimensional model of a suspension bridge introduced by Lazer and McKenna [7] and studied later in many papers (e.g., $[1,2,3,4,5,6,8]$):

$$
\begin{align*}
& m u_{t t}+E I u_{x x x x}+b u_{t}+\kappa u^{+}=h(x, t) \\
& u(0, t)=u(L, t)=u_{x x}(0, t)=u_{x x}(L, t)=0 \tag{1}\\
& u(x, t+2 \pi)=u(x, t),-\infty<t<+\infty, x \in(0, L),
\end{align*}
$$

or its rescaled form, respectively,

$$
\begin{align*}
& u_{t t}+\alpha^{2} u_{x x x x}+\beta u_{t}+k u^{+}=h(x, t) \\
& u(0, t)=u(\pi, t)=u_{x x}(0, t)=u_{x x}(\pi, t)=0 \tag{2}\\
& u(x, t+2 \pi)=u(x, t),-\infty<t<+\infty, x \in(0, \pi)
\end{align*}
$$

This model represents the bridge as a damped beam with simply supported ends, subject to a periodic external force and to the nonlinear restoring force of cables hanging on a solid frame. The displacement $u(x, t)$ is measured as positive in the downward direction and the cables are taken as one-sided springs obeying Hooke's law, with a restoring force proportional to the displacement if they are stretched, and with no restoring force if they are compressed. We recall that $u^{+}(x, t)=\max \{0, u(x, t)\}$ is the positive part of $u(x, t)$ and k (or κ, respectively) can be interpreted as the stiffness of the cables. The meaning of other parameters can be found, e.g., in [2]. Evidently, only $\alpha>0, \beta>0$ and $k>0$ make sense from the physical point of view, however, for the sake of generality, we will deal with $k \in \mathbb{R}$ throughout the text.

The aim of this paper is to revise the original result of [9], which says that for sufficiently small $|k|$, the problem (2) admits a unique solution for any right-hand side. Using the same techniques, however with finer arguments, we provide a significant improvement and extension of the allowed values of k. This means that even for a more pronounced asymmetry, the system possesses a unique solution for any loading and no bifurcations can occur.

2. Abstract setting

Let us denote by $\Omega=(0, \pi) \times(0,2 \pi)$ the considered domain and by $H=L^{2}(\Omega, \mathbb{R})$ the real Hilbert space equipped with the standard scalar product and the corresponding norm. Further, we denote by \mathcal{D}

[^0]
https://daneshyari.com/en/article/5471759

Download Persian Version:
https://daneshyari.com/article/5471759

Daneshyari.com

[^0]: Email addresses: gabriela@kma.zcu.cz (Gabriela Holubová), jjanouse@kma.zcu.cz (Jakub Janoušek)

