
Applied Mathematics Letters 71 (2017) 14–23

Contents lists available at ScienceDirect

Applied Mathematics Letters

www.elsevier.com/locate/aml

Constitutive-relation-error-based a posteriori error bounds for a
class of elliptic variational inequalities

Mengwu Guo*, Hongzhi Zhong
Department of Civil Engineering, Tsinghua University, Beijing 100084, PR China

a r t i c l e i n f o

Article history:
Received 14 January 2017
Received in revised form 10 March
2017
Accepted 11 March 2017
Available online 18 March 2017

Keywords:
Constitutive relation error
a posteriori error estimation
Strict bound
Elliptic variational inequality
Dual variational formulation

a b s t r a c t

On the basis of the dual variational formulation of a class of elliptic variational
inequalities, a constitutive relation error is defined for the variational inequalities
as an a posteriori error estimator, which is shown to guarantee strict upper bounds
of the global energy-norm errors of kinematically admissible solutions. A numerical
example is presented to validate the strictly bounding property of the constitutive
relation error for the variational inequalities in question.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

A class of nonlinear problems in science and engineering can be expressed in terms of variational
inequalities [1]. This work is focused on some variational inequalities represented as quadratic minimizing
problems in convex sets, which can be used to describe one-sided contact of elastic bodies in structural
analysis and some free boundary problems in hydrodynamics, see [2,3]. When solving the variational
inequalities numerically, a posteriori error estimation is often performed to evaluate the discretization error
in the approximate solution, and some typical techniques are reported in [4–10] for estimating global norm
errors.

The constitutive relation error [11,12] was proposed by Ladevèze in [13] as an a posteriori error estimator
for finite element analysis. It has been applied to a variety of problems in mechanics and claimed to provide
strict upper bounds for global errors [14,15] and strict upper & lower bounds for errors in quantities of
interest [16,17]. In this paper, the constitutive relation error theory is extended to the class of elliptic
variational inequalities in question. The constitutive relation error is established via the dual variational
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formulation of the variational inequalities, and its strictly upper-bounding property for global errors is
shown to be inherited.

After the introduction, the elliptic variational inequality problem is defined in Section 2, and the
corresponding constitutive relation error is defined in Section 3. In Section 4, some numerical techniques are
developed in detail and the strictly bounding property of the constitutive relation error is illustrated by an
example. Some conclusions are drawn in Section 5.

2. Problem definition

Consider the problems described by elliptic variational inequalities in the following (primal) quadratic
minimizing formulation:

u = arg min
v∈K

{
1
2 ⟨Av,Av⟩ − l(v) + j(v)

}
, (1)

where K ⊂ V is a closed convex nonempty set in a real Hilbert space V , ⟨·, ·⟩ is the inner product of a
Hilbert space S, A : V → S is a linear differential operator, l(·) is a continuous linear form on V , i.e. l ∈ V ′,
and j(·) is a lower semi-continuous convex but not necessarily differentiable functional defined on V . Define
a bilinear form a(·, ·) : V × V → R as a(u, v) = ⟨Au,Av⟩, (u, v) ∈ V × V , and assume that a is continuous
and coercive. Then the variational formulation (1) can be rewritten as

u = arg min
v∈K

{
1
2a(v, v) − l(v) + j(v)

}
, (2)

or equivalently: u ∈ K such that

a(u, v − u) + j(v) − j(u) ≥ l(v − u) ∀v ∈ K. (3)

Suppose that the convex set K can be defined in terms of a convex cone M , which is a subset of a real
Hilbert space L and has its vertex at θL (zero element of L), and a linear form g1 ∈ L′, i.e.

K = {v ∈ V : b1(v, η) ≥ g1(η),∀η ∈ M}, (4)

with b1(·, ·) being a continuous bilinear form on V × L. Assume that functional j is defined in terms of a
bounded subset N of a real Hilbert space Q, such that

j(v) = max
ξ∈N

{−b2(v, ξ) + g2(ξ)} , v ∈ V, (5)

in which b2(·, ·) is a continuous bilinear form on V ×Q and g2 ∈ Q′. Suppose that bilinear forms b1 and b2
satisfy the following inf–sup condition: there exists a constant β > 0 such that

sup
v∈V \{θV }

|b1(v, η) + b2(v, ξ)|
∥v∥V

≥ β
(

∥η∥2
L + ∥ξ∥2

Q

) 1
2 ∀(η, ξ) ∈ L×Q, (6)

where ∥ · ∥V , ∥ · ∥L and ∥ · ∥Q denote the norms on spaces V , L and Q, respectively.
With the definition of the set K, i.e. an inequality constraint in (4), and that of the functional j in (5),

a Lagrangian formulation is defined by introducing two multipliers as:

L(v, η, ξ) = 1
2a(v, v) − l(v) − b1(v, η) + g1(η) − b2(v, ξ) + g2(ξ). (7)

There exists only one saddle point of L in V ×M ×N , denoted by (u, λ, ω), such that

L(u, η, ξ) ≤ L(u, λ, ω) ≤ L(v, λ, ω) ∀(v, η, ξ) ∈ V ×M ×N, (8)
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