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h i g h l i g h t s

• Two novel epidemical models with state feedback control strategies are introduced.
• Some sufficient conditions on the existence and orbit stability of positive periodic solution are presented.
• The existence and orbit stability of semi-trivial periodic solution are proved, which show that the disease is dying out.
• Numerical simulations are carried out to illustrate the main results.
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a b s t r a c t

To prevent and control the spread of infectious disease, in this paper, we formulate
two susceptible–infected–vaccinated–susceptible (SIVS) epidemic models, where state-
dependent pulse vaccination control strategies are introduced. The firstmodel incorporates
the density of infected individuals as the monitoring threshold value and some sufficient
conditions for the existence and orbital stability of order-1 or order-2 periodic solutions
are obtained by using the Poincaré map and qualitative theory of ordinary differential
equations. Further, using the density of susceptible individuals as themonitoring threshold
value, the second model with state-dependent pulse vaccination is proposed, and the
existence and stability of the semi-trivial periodic solution and order-1 periodic solution
can be obtained via utilizing the analog of the Poincaré criterion. Theoretical results imply
that a state-dependent pulse vaccination strategy can eliminate the spread of infectious
disease or keep the density of infected individuals at a desired low level for a long time.
Finally, numerical simulations are given to verify the correctness of the theoretical results
and to obtain the highest efficiency of state-dependent pulse control strategy.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Infectious diseases are caused by microorganisms such as viruses, bacteria, fungi, or parasites and can spread between
individuals. These diseases can be spread, directly or indirectly, from one person to another. Some pathogens are spread
through the air or through surface contact. Every year, millions of humans suffer or die from various infectious diseases.
The control, and hence, eradication of infectious disease has been the subject of scientific work in various fields, including
medicine andmathematics. In particular, mathematicians have proposed various dynamicmodels to study the transmission
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mechanism of infectious diseases to predict the future course of an outbreak and to evaluate strategies to control the spread
of infectious diseases. Among them, mathematical models of differential equations have attracted the attention of many
scholars, and the main study contents include the non-negativeness and boundedness of solution, the persistence and
extinction of infectious diseases as well as the threshold condition of the basic reproductive number, and so on. We refer
to [1–7] and the references therein.

It is well known that vaccination is regarded as themost effectivemeasure to prevent and control the spread of infectious
diseases, such as rabies, yellow fever, poliomyelitis, measles [8], and so on. Considering that vaccinations take place only
at certain times, Shulgin et al. [9] put forth the theory of fixed-time pulse vaccination strategy (FPVS), which consists
of periodic repetitions of pulse vaccination in a population, and showed that the infection-free solution can exist and be
stable. Soon after, theories and applications of pulse vaccination with fixed time have been a hot topic of epidemic dynamic
models. For example, d’Onofrio [10] proposed a susceptible–exposed–infected–removed (SEIR) epidemic model with FPVS
and obtained the local asymptotic stability and global asymptotic stability of the disease-free periodic solution. Liu et al. [11]
established two susceptible–vaccinated–infected–removed (SVIR) models to describe continuous vaccination strategy and
FPVS, respectively. More various interesting results can be found in [12–15] and the references therein. Theoretical results
show that FPVS can be distinguished from the conventional strategies in leading to disease eradication at relatively low
values of vaccination.

Recently, however, increasing amounts of data have shown that the eradication of some infectious diseases (such as
cholera, influenza, pulmonary tuberculosis, bacillary dysentery, brucellosis, and so on) in a short time is sometimes difficult
both practically and economically. From an economic standpoint, control measures may not be necessary if the density
of infected individuals in the population is relatively small, or the disease does not cause serious harm to the society.
Therefore, FPVS is not the most effective or economical way to eliminate these infectious diseases because the vaccination
strategies are taken at some fixed times and are not dependent on the state of infectious disease. In general, to prevent
the spread of infectious disease, the public may be encouraged to get vaccinated when the number of infected individuals
is relatively high (for example, reaching a critical level). This type of control strategy depends on the state of infected
individuals (or susceptible individuals) and is called a state-dependent pulse vaccination strategy. Based on this idea, Tang
et al. [16] proposed a general epidemic model incorporating state-dependent pulse control using a combination of pulse
vaccination of susceptible individuals and treatment (or isolation or both) of the infected individuals and discussed the
effects of implementing state-dependent pulse vaccination and/or treatment (or isolation) to evaluate the feasibility and
expense of disease control over an extended period. Nie et al. [17–19] applied state-dependent pulse control strategies to a
susceptible–infected–removed (SIR)model, susceptible–infected–removed–susceptible (SIRS)model, and a viralmodel, and
obtained some sufficient conditions for the existence and stability of positive periodic solutions by themethod of qualitative
analysis, Poincaré map, Poincaré criterion, and other analysis methods. In addition, a state-dependent pulse control strategy
is also commonly used in mathematical biology owing to its low-cost, high-efficiency, and feasible nature, for example,
in population dynamic models [20,21], chemostat dynamic models [22,23], microbial growth models [24,25], cylindrical
dynamic systems [26], and so on.

Motivated by the above discussion, the main purpose of this paper is to analyze whether state-dependent pulse
vaccination can be used to effectively prevent and control the spread of infectious disease and to address how these key
factors (including the strength of vaccination and threshold value) affect the control of infectious disease. The rest of this
paper is organized as follows. In Section 2, two susceptible–infected–vaccinated–susceptible (SIVS) models with state-
dependent pulse vaccination are proposed, and some preliminary definitions and lemmas are also introduced. In Section
3, the existence and orbital stability of an order-1 or order-2 periodic solution for the first model is presented, where the
density of infected individuals is used as the control threshold value. The existence and stability of the semi-trivial periodic
solution and order-1 periodic solution of the other model are reported in Section 4, where control strategies are taken when
the density of susceptible individuals reaches a risk threshold value. In Section 5, by carrying out somenumerical simulations,
we try to confirm the main theoretical results to illustrate some key factors to prevent and control the spread of infectious
disease. Some concluding remarks are presented in the last section.

2. Model formulation and preliminaries

In this section, we propose two epidemic models with state-dependent pulse vaccination. For convenience, we separate
the human population into three classes, susceptible, infected, and vaccinated, with sizes denoted by S(t), I(t), and V (t),
respectively. The following model is a classic SIVS model with fixed-time pulse vaccination, which was developed in [27] as
follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)
dt

= µN(t) − βS(t)I(t) − µS(t) + cI(t) + θV (t)

dI(t)
dt

= β(S(t) + σV (t))I(t) − (µ + c)I(t)

dV (t)
dt

= −σβV (t)I(t) − (µ + θ )V (t)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
t ̸= nT ,

S(nT+) = (1 − ω)S(nT )
I(nT+) = I(nT )
V (nT+) = V (nT ) + ωS(nT )

⎫⎪⎬⎪⎭ t = nT , n = 0, 1, 2, . . . ,

(1)
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