
Nonlinear Analysis: Hybrid Systems 26 (2017) 168–189

Contents lists available at ScienceDirect

Nonlinear Analysis: Hybrid Systems

journal homepage: www.elsevier.com/locate/nahs

A type-based analysis of causality loops in hybrid systems
modelers
Albert Benveniste a, Timothy Bourke b,c, Benoit Caillaud a, Bruno Pagano e,
Marc Pouzet d,c,b,*
a Inria Rennes-Bretagne Atlantique, France
b Inria Paris, France
c École normale supérieure, PSL Research University, France
d Sorbonne Universités, UPMC Univ Paris 06, France
e ANSYS/Esterel Technologies, France

a r t i c l e i n f o

Keywords:
Hybrid systems
Synchronous programming languages
Type systems

a b s t r a c t

Explicit hybrid systems modelers like Simulink/Stateflow allow for programming both
discrete- and continuous-time behaviors with complex interactions between them. An
important step in their compilation is the static detection of algebraic or causality loops.
Such loops can cause simulations to deadlock and prevent the generation of statically
scheduled code.

This paper addresses this issue for a hybrid modeling language that combines syn-
chronous data-flow equations with Ordinary Differential Equations (ODEs). We introduce
the operator last x for the left-limit of a signal x. The last x operator is used to break
causality loops and permits a uniform treatment of discrete and continuous state variables.
The semantics of the language relies on non-standard analysis, defining an execution
as a sequence of infinitesimally small steps. A signal is deemed causally correct when
it can be computed sequentially and only changes infinitesimally outside of announced
discrete events like zero-crossings. The causality analysis takes the form of a type system
that expresses dependencies between signals. In well-typed programs, (i) signals are
provably continuous during integration provided that imported external functions are also
continuous, and (ii) sequential code can be generated.

The effectiveness of the system is illustrated with several examples written in Zélus, a
Lustre-like synchronous language extended with ODEs.

© 2017 Published by Elsevier Ltd.

1. Causality and scheduling

Tools for modeling hybrid systems [1] such as Modelica,1 LabVIEW,2 and Simulink/ Stateflow,3 are now rightly
understood and studied as programming languages. Indeed, models are used not only for simulation, but also for test-case

* Corresponding author at: École normale supérieure, PSL Research University, France.
E-mail addresses: Albert.Benveniste@inria.fr (A. Benveniste), Timothy.Bourke@inria.fr (T. Bourke), Benoit.Caillaud@inria.fr (B. Caillaud),

Bruno.Pagano@ansys.com (B. Pagano), Marc.Pouzet@ens.fr (M. Pouzet).
1 http://www.modelica.org.
2 http://www.ni.com/labview.
3 http://www.mathworks.com/products/simulink.

http://dx.doi.org/10.1016/j.nahs.2017.04.004
1751-570X/© 2017 Published by Elsevier Ltd.

http://dx.doi.org/10.1016/j.nahs.2017.04.004
http://www.elsevier.com/locate/nahs
http://www.elsevier.com/locate/nahs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nahs.2017.04.004&domain=pdf
mailto:Albert.Benveniste@inria.fr
mailto:Timothy.Bourke@inria.fr
mailto:Benoit.Caillaud@inria.fr
mailto:Bruno.Pagano@ansys.com
mailto:Marc.Pouzet@ens.fr
http://www.modelica.org
http://www.modelica.org
http://www.modelica.org
http://www.modelica.org
http://www.modelica.org
http://www.modelica.org
http://www.modelica.org
http://www.modelica.org
http://www.modelica.org
http://www.modelica.org
http://www.modelica.org
http://www.modelica.org
http://www.modelica.org
http://www.modelica.org
http://www.modelica.org
http://www.modelica.org
http://www.modelica.org
http://www.modelica.org
http://www.modelica.org
http://www.modelica.org
http://www.modelica.org
http://www.modelica.org
http://www.modelica.org
http://www.ni.com/labview
http://www.ni.com/labview
http://www.ni.com/labview
http://www.ni.com/labview
http://www.ni.com/labview
http://www.ni.com/labview
http://www.ni.com/labview
http://www.ni.com/labview
http://www.ni.com/labview
http://www.ni.com/labview
http://www.ni.com/labview
http://www.ni.com/labview
http://www.ni.com/labview
http://www.ni.com/labview
http://www.ni.com/labview
http://www.ni.com/labview
http://www.ni.com/labview
http://www.ni.com/labview
http://www.ni.com/labview
http://www.ni.com/labview
http://www.ni.com/labview
http://www.ni.com/labview
http://www.ni.com/labview
http://www.ni.com/labview
http://www.ni.com/labview
http://www.mathworks.com/products/simulink
http://www.mathworks.com/products/simulink
http://www.mathworks.com/products/simulink
http://www.mathworks.com/products/simulink
http://www.mathworks.com/products/simulink
http://www.mathworks.com/products/simulink
http://www.mathworks.com/products/simulink
http://www.mathworks.com/products/simulink
http://www.mathworks.com/products/simulink
http://www.mathworks.com/products/simulink
http://www.mathworks.com/products/simulink
http://www.mathworks.com/products/simulink
http://www.mathworks.com/products/simulink
http://www.mathworks.com/products/simulink
http://www.mathworks.com/products/simulink
http://www.mathworks.com/products/simulink
http://www.mathworks.com/products/simulink
http://www.mathworks.com/products/simulink
http://www.mathworks.com/products/simulink
http://www.mathworks.com/products/simulink
http://www.mathworks.com/products/simulink
http://www.mathworks.com/products/simulink
http://www.mathworks.com/products/simulink
http://www.mathworks.com/products/simulink
http://www.mathworks.com/products/simulink
http://www.mathworks.com/products/simulink
http://www.mathworks.com/products/simulink
http://www.mathworks.com/products/simulink
http://www.mathworks.com/products/simulink
http://www.mathworks.com/products/simulink
http://www.mathworks.com/products/simulink
http://www.mathworks.com/products/simulink
http://www.mathworks.com/products/simulink
http://www.mathworks.com/products/simulink
http://www.mathworks.com/products/simulink
http://www.mathworks.com/products/simulink
http://www.mathworks.com/products/simulink
http://www.mathworks.com/products/simulink
http://www.mathworks.com/products/simulink
http://www.mathworks.com/products/simulink
http://www.mathworks.com/products/simulink
http://www.mathworks.com/products/simulink
http://dx.doi.org/10.1016/j.nahs.2017.04.004


A. Benveniste et al. / Nonlinear Analysis: Hybrid Systems 26 (2017) 168–189 169

generation, formal verification and translation to embedded code. This explains the need for formal operational semantics
to specify their implementations [2].

The underlying mathematical model is the synchronous parallel composition of stream equations, Ordinary Differential
Equations (ODEs), hierarchical automata, and imperative features. While each of these taken separately is precisely
understood, real languages allow them to be combined in sophisticated ways. One major difficulty in such languages is
the treatment of causality loops.

Causality or algebraic loops [3, 2-34] pose problems ofwell-definedness and compilation. They can lead tomathematically
unsound models, prevent simulators from statically ensuring the existence and unicity of a least fixed point, and compilers
from generating statically scheduled code (typically sequential code written in C). Statically scheduled code is the usual
target for embedded software. But it is also important for efficient simulations of the whole system where continuous-time
trajectories are approximated by a numerical solver. The static detection of causality loops, termed causality analysis, has
been studied and implemented since the mid-1980s in synchronous language compilers [4–7]. The classical and simplest
solution is to reject instantaneous cycles or feedback loops, which do not cross a unit delay: at every instant, the value of a
signal x only depends on the current value of inputs and possibly some internal state, but not on x itself. For instance, the
Lustre-like equations4 :

x = 0.0 -> pre y and y = if c then x + 1.0 else x

define two sequences (xn)n∈N and (yn)n∈N such that:

x(0) = 0 y(n) = if c(n) then x(n) + 1 else x(n)
x(n) = y(n − 1).

They are causally correct since the feedback loop for x contains a unit delay pre y (‘previous’). Replacing pre y with
y gives non-causal equations that a Lustre compiler would reject. Causally correct equations are statically scheduled
to produce a sequential, loop-free step function. Below is an excerpt of the C code generated by the Heptagon Lustre
compiler [8]:

if (self->v_1) {x = 0;} else {x = self->v_2;};
if (c) {y = x+1;} else {y = x;};
self->v_2 = y; self->v_1 = false;

It computes current values of x and y from that of c. The internal memory of function step is in self, with self->v_1
initialized to true and set to false to encode the Lustre operator ->, and self->v_2 storing the value of pre y.
ODEs with resets: Consider now programs defining continuous-time signals via ODEs and equations only. For example, the
program:

der y = z init 4.0 and z = 10.0 - 0.1 * y and k = y + 1.0

defines the three signals y, z and k, where for all t ∈ R+, dy
dt (t) = z(t), y(0) = 4, z(t) = 10 − 0.1 · y(t), and k(t) = y(t) + 1.5

This program is causally correct since it is possible to generate a sequential function derivative(y) = let z = 10−0.1∗y in z
that returns the current derivative of y and an initial value 4 for y from which a numeric solver [9] can compute a sequence
of approximations y(tn) for increasing values of time tn ∈ R+ and n ∈ N. Given a set of mutually recursive equations
{xi = ei}i∈[1..k] and {ẏj = e′

j}j∈[1..m], the compiler has to produce the derivative function that defines the current value of
(ẏj)j∈[1..m] from current inputs, discrete state variables and continuous state variables (yj)j∈[1..m]. Thus, for equations between
continuous-time signals, integrators break algebraic loops just as delays do for equations over discrete-time signals.

Canwe reuse the simple justificationweused for data-flowequations to justify that the above program is causal? Consider
the value that ywould have if computed by an ideal solver taking an infinitesimal step of duration ∂ [10]. Writing ⋆y(n), ⋆z(n)
and ⋆k(n) for the values of y, z and k at instant n∂ , where n ∈

⋆N is a non-standard integer, we have:
⋆y(0) = 4 ⋆z(n) = 10 − 0.1 ·

⋆y(n)
⋆y(n + 1) =

⋆y(n) +
⋆z(n) · ∂ ⋆k(n) =

⋆y(n) + 1

where ⋆y(n) is defined sequentially from past values and ⋆y(n) and ⋆y(n + 1) are infinitesimally close, for all n ∈
⋆N, yielding

a unique solution for y, z and k. The equations are thus causally correct.
Troubles arise when ODEs interact with discrete-time constructs, for example when a reset occurs at every occurrence

of an event. For example, consider the sawtooth signal y : R+
↦→ R+ where dy

dt (t) = 1 and y(t) = 0 when t ∈ N. One may
try with an ODE and a reset:

der y = 1.0 init 0.0 reset up(y - 1.0) -> 0.0

4 The unit delay initialized to 0 is written 0− > pre(·) or 0 fby · (‘0 followed by’), or even, notably in Simulink, 1
z .

5 der y = e init v0 is written in Simulink as y =
1
s (e) with y initialized to v0 .



Download English Version:

https://daneshyari.com/en/article/5472003

Download Persian Version:

https://daneshyari.com/article/5472003

Daneshyari.com

https://daneshyari.com/en/article/5472003
https://daneshyari.com/article/5472003
https://daneshyari.com

