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a b s t r a c t

In view of the trend towards higher power densities in ever shrinking geometries, understanding heat
spreading fundamentals is gaining importance. In this paper heat spreading in thin longitudinal
geometries is considered. This geometry is of practical interest in one-dimensional Cartesian geometries.
A characteristic length is derived and it is shown that this has physical significance for the distance that
heat spreads, and for the total amount of heat cooled away. Furthermore, it is investigated when “thin” is
a viable assumption. The use of the characteristic length is illustrated for the case of a line source
cooling to a plate and for the case of the fins of a plate heatsink. The results are compared to numerical
simulations. The work is an extension of the authors' earlier work on heat spreading in infinite
longitudinal geometries and heat spreading in infinite and finite circular geometries.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Simultaneous advances in miniaturization and performance are
a continuing trend in the development of new generations
of electronic products. Therefore, source power densities are
increasing while at the same time allowable source temperatures
stay the same or are lowered. To cool small sources to realistic
temperatures, and obtain realistic power densities at the compo-
nent and system level, heat spreading is gaining in importance.

The thin longitudinal geometry is an important form factor in
heat spreading. It covers spreading along the fin height in pin fin
and plate fin geometries, spreading along a line in narrow strip
geometries, and heat spreading from line sources to a thin plate.

Heat spreading in the thin infinite longitudinal case was
addressed previously in [1], and radial heat spreading from
a small heat source on a thin plate has been addressed in [2].

The present paper addresses the derivation of the characteristic
length for the longitudinal (Cartesian) case in Section 2, and investi-
gates the physical meaning of this length in Section 3. In Section 3
also approximations are derived for the temperature distribution
along the fin and for the amount of heat transferred to the ambient. In
Section 4, criteria are given as to under what circumstances a fin can
be considered thin. Sections 5 and 6 show an application example for
the case of a strip heat source on a thin plate and for the case of a
plate heatsink, and compare to numerical results.

The results demonstrate the engineering relevance of the
derived characteristic length based approximation in enabling
quick engineering estimations.

2. Derivation of length scale

In [1] the characteristic length for the infinitely long, thin
longitudinal case was derived directly from the differential equa-
tion. An alternative approach was taken in [2], inspired by the
work of Adrian Bejan [3,4]. A similar approach is now demon-
strated for the longitudinal case.

One of the guiding principles in the constructal approach is
that relevant length scales appear when competing physical
effects are of the same magnitude. In heat spreading, the compet-
ing mechanisms are the conductive heat spreading in the thin
plate and the convective heat transfer from the thin plate to the
ambient.

Consider the case depicted in Fig. 1. A thin flat plate of
thickness t (m), width w (m) is heated at the left side surface at
x¼0. The far right surface at the end is adiabatic. The thermal
conductivity is k Wm�1 K�1. Cooling is by means of heat transfer
coefficient h Wm�2 K�1 on one side. The heating and cooling are
uniform over the width direction of the plate and the plate is so
thin that the temperature is uniform over the thickness.1 The
plate's temperature distribution is a function of the coordinate x
along the length direction. The thermal resistances for conductive
and for convective heat transfer of a fin section of length L are

Rconduction ¼
L

twk
ð1Þ

Rconvection ¼
1

Lwh
ð2Þ
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Equating the resistances leads to

L2 ¼ tk
h

L¼
ffiffiffiffiffi
tk
h

r
� Lc ð3Þ

Expression (3) is the same Lc expression as derived from the
governing differential equations in [2].

3. What does the length scale mean?

We now define a scaled length η and scaled temperature θ,
which are used to investigate the physical meaning of Lc.

η� x
Lc

θ� T�Tambient

T0�Tambient
ð4Þ

Furthermore we define L as the total length of the fin, θ0¼1 as
the scaled temperature at x¼0, the edge of the source, and θe as
the scaled temperature at the fin tip x¼L or in scaled variables
η¼ηe¼L/Lc.

The total heat transferred is given by

q¼
Z L

0
whðT�TambientÞdx¼

Z ηe

0
whθðT0�TambientÞLcdη ð5Þ

This scales as

Q � q
whLcðT0�TambientÞ

¼
Z ηe

0
θdη ð6Þ

Note that (6) demonstrates that Q equals the area below the
θ(η) curve. Furthermore it follows from (6) that

R edge�ambient �
T0�Tambient

q
¼ 1
QwhLc

ð7Þ

The temperature field in the geometry is well known [5].
In dimensionless form, the scaled temperature, θ(η), relates to
the scaled distance, η, and the length of the fin, ηe as

θðηÞ ¼ coshðηe�ηÞ
coshðηeÞ

¼ coshðηÞ� tanhðηeÞsinhðηÞ ð8Þ

3.1. Infinite case

For long fins, ηe42, tan h(ηe)E1 and

θ¼ cos hðηÞ� sin hðηÞ ¼ e� η ð9Þ
The temperature decays exponentially with rate 1 from θ¼1 at

η¼0, to θ¼0. In exponential decay, the influence of the imposed
end temperature continues indefinitely but it diminishes fast:
At η¼1, θ¼0.37; at η¼2, θ¼0.14, and at η¼3, θ¼0.05. In other

words less than 5% of the imposed temperature is found beyond a
distance of 3Lc.

The area below the exponential curve is finite and equal to 1.
Eq. (6) shows that the scaled heat loss to the ambient, Q, is equal to
this area. Thus

Q � q
whLcðT0 �Tambient Þ ¼ 1

q¼whLcðT0�TambientÞ ð10Þ

This shows that the infinitely long rectangular fin with T0
imposed at the end x¼0, experiences heat loss to the ambient
as if a length Lc is heated to T0, and the remainder of the fin
stays cold. Graphically, this is represented by a step temperature
distribution over distance Lc, as illustrated in Fig. 2. The step
temperature distribution exactly matches the source temperature
at x¼0 and exactly matches Q, the total heat transferred to
ambient, but is less representative of the true exponential tem-
perature drop off for 0oxo3Lc. A linear temperature drop over
distance 2Lc has a much better fit: The source temperature at x¼0
is matched, the area below the curve, Q, equals 1, so the total heat
transferred to ambient is an exact match also. In addition the
temperature is monotonically decreasing with the distance from
the source, which is a better match to physics since heat flows
from hot to cold. The exponential temperature decay, the step
temperature distribution and the linear temperature drop are
compared in Fig. 2. In all three cases, the source temperature is

Nomenclature

Bi Biot number (dimensionless)
h heat transfer coefficient (Wm�2 K�1)
k thermal conductivity (Wm�1 K�1)
L length (m)
Lc characteristic length (m)
Lsource length of source (m)
q transferred heat (W)
Q scaled transferred heat (dimensionless)

R thermal resistance (K/W)
T temperature (C)
t thickness (m)
w width (m)
x distance along the length (m)
η scaled length distance (Eq. (4)) (dimensionless)
θ scaled temperature (Eq. (4)) (dimensionless)
0 (subscript) at x¼0
e (subscript) at x¼L

Fig. 1. Longitudinal fin geometry.

Fig. 2. Temperature distribution for the infinite fin.
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