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a b s t r a c t

In this article, nonsmooth extensions of the Speed-Gradient (SG) algorithms in differen-
tial and finite forms are proposed. The conditions ensuring achievement of the control
goal (convergence of the goal function to zero) are established. Furthermore, conditions
under which the control goal is achieved in finite time with the use of nonsmooth or
discontinuous SG algorithms are obtained. Theoretical results are illustrated by example
of nonsmooth energy-based control for a non-affine in control pendulum-like system.
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1. Introduction

Anumber of approaches to stabilization of nonlinear systems are basedon the introduction of an appropriate goal/objective
functional and the design of a control algorithmproviding its asymptotic optimization. Perhaps,most popular ones are based
on the design of a controller that minimizes integral performance index. In many cases these approaches lead to a stable
closed loop system [1–3]. Alternatively, in [4] it was proposed to minimize the rate of change of a function of the state
V (x) along trajectories of the controlled system at each time instant t . However, such local minimization is not necessary to
achieve stability. If the function V (x) serves as a Lyapunov function for the closed loop system, stability is ensured, provided
V (x(t)) decreases for all t . Such class of algorithms have been studied since late 1970s under the name of Speed-Gradient
algorithms [5,6] or (in the affine case) LgV or Jurdjevic–Quinn algorithms [7]. It was shown [8] that a variety of adaptation
and control algorithms can be obtained with a proper choice of the controlled system or the goal function. A fundamental
result was obtained by E.Sontag [9] who has demonstrated that under special choice of a scalar gain the closed loop becomes
globally stable (‘universal Sontag’s construction’).

Stability analysis for an overwhelming majority of the existing algorithms was performed under the assumption of
smoothness of the goal function and continuity of the control system right hand sides. In such a case the function V̇ is
continuous. However, a relaxation of the smoothness assumption provides hopes for better performance of the closed loop
system. Therefore it is important to develop a systematic theory allowing one to design nonlinear controllers and to prove
stability in nonsmooth situations. Some special cases of relay algorithmswere considered in [8]; they provided a new view of
the variable structure systems (VSS). However, a comprehensive theory based on thewell developed apparatus of nonsmooth
analysis [10–14] did not exist until recently.

✩ The results on finite time convergence of the Speed-Pseudogradient algorithm (Corollary 1 and Theorem 3) were obtained in IPME RAS and supported
by Russian Science Foundation [grant 14-29-00142]. The other results were obtained under support of the Government of Russian Federation [grant 074-
U01].
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The first attempt to study nonsmooth counterparts of SG-controllers was made in [15], where proofs were just outlined.
In this paper, we provide a more detailed exposition and some extension of the results of [15]. Besides, a new interesting
example is considered. Let us also mention the paper [16], in which a different version of a nonsmooth SG-algorithm was
considered and utilized to design an almost global stabilizer of the Brockett integrator that is continuous along solutions of
the closed-loop system.

As a basis for formal approach to nonsmooth problems we chose the concept of Hadamard directional differentiability
[11]. It allowed us to introduce and analyse the Speed-Subgradient algorithms in differential and finite forms.

An important advantage of nonsmooth optimization and control algorithms is a potential for finite-time convergence:
the control goal can be achieved in finite time. It is widely used in variable structure systems (VSS), in switching systems,
etc., see [17–21] and references therein. In this paper, we show that under some additional assumptions nonsmooth and
discontinuous SG-algorithms in finite form provide finite-time convergence to the goal set.

It is worth noting that in the smooth case the Speed-Gradient algorithms are defined via the gradient of the speed of
change (i.e. Lie derivative) of a chosen goal function. In the nonsmooth case, one has to replace the gradient and the derivative
with their nonsmooth counterparts, i.e.with a subdifferential and a generalized derivative. Being inspired by the ideas of [11],
we utilized Hadamard’s directional derivative and the subdifferential (in the sense of convex analysis) of an upper convex
approximation of this derivative. Let us note that one can use different tools from nonsmooth and variational analysis, such
as the subderivative and the proximal subdifferential [13], in order to construct a different extension of the Speed-Gradient
algorithms to a nonsmooth setting.

The structure of the paper is as follows. In Section 2 necessary notions andmethods fromnonsmooth analysis are outlined.
In Section 3 the problem statement is given and two key results concerning nonsmooth SG-algorithms in differential and
finite forms are presented. Two examples are described in Section 4.

2. Preliminaries

In this section,we recall somenotions fromnonsmooth analysis [11] and set-valued analysis [22] that are used throughout
the article. Denote by |·| the Euclidean norm in Rn, and denote R+ = [0,+∞).

Let a real-valued function f be defined in a neighbourhood of a point x ∈ Rn. The function f is calledHadamard directionally
differentiable at the point x if for any v ∈ Rn there exists the finite limit

f ′(x; v) = lim
[α,v′]→[+0,v]

f (x + αv′) − f (x)
α

(the motivation behind the notation under lim was discussed in [23]). The function f ′(x; ·) is called the Hadamard directional
derivative of f at x. Note that there exists the elaborate calculus of Hadamard directional derivatives [11]. Observe also that
if n = 1, then the quantity f ′(x, 1) coincides with the right-hand side derivative of f at x that is denoted by D+f (x).

It is easy to see that the function v → f ′(x; v) is continuous andpositively homogeneous (of degree one), i.e. for any v ∈ Rn

and λ ≥ 0 one has f ′(x; λv) = λf ′(x; v). A convex positively homogeneous function p : Rn
→ R such that p(v) ≥ f ′(x; v) for

all v ∈ Rn is called an upper convex approximation of the function f ′(x; ·).
Let C ⊂ Rn be an open set. Recall that a function F that maps points from C to possibly empty subset of Rm is called a

set-valuedmapping (ormultifunction) from C toRm. The set-valuedmapping F is called outer semicontinuous at a point x0 ∈ C
if for any open set V ⊂ Rm with F (x0) ⊂ V there exists δ > 0 such that for all x ∈ C with |x − x0|< δ one has F (x) ⊂ V . The
set-valued mapping F is called measurable if for any open set V ⊂ Rn the set {x ∈ C : F (x) ∩ V ̸= ∅} is measurable. One can
show that any outer semicontinuous set-valued mapping is measurable.

An important example of an outer semicontinuous (and thus measurable) set-valued mapping is the subdifferential
mapping of a convex function. Let f : Rn

→ R be a convex function. It should be noted that throughout this article we
consider only finite-valued convex functions.

Recall that the set

∂ f (x) =
{
v ∈ Rn

: f (y) − f (x) ≥ vT (y − x) ∀y ∈ Rn}
is referred to as the subdifferential of f at a point x. One can verify that the set ∂ f (x) is nonempty, convex and compact. As it
was mentioned above, the subdifferential mapping x → ∂ f (x) is outer semicontinuous on Rn.

3. Nonsmooth speed-gradient: Two algorithms

3.1. Problem formulation

Consider the controlled system

ẋ = F (x, u, t), t ≥ 0, (1)

where x ∈ Rn is the vector of the system state, and u ∈ Rm is the control.We assume that the function F : Rn
×Rm

×R+ → Rn

satisfies the Carathéodory condition, i.e. the mapping (u, x) → F (x, u, t) is continuous for almost all t ≥ 0, and the mapping
t → F (x, u, t) is measurable for all x ∈ Rn and u ∈ Rm. Unless otherwise stated, a solution of (1), even in the case of a
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