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a b s t r a c t

This paper deals with the problem of exponential synchronization of Markovian jumping
chaotic neural networks with saturating actuators using a sampled-data controller. By
constructing a proper Lyapunov–Krasovskii functional (LKF) with triple integral terms,
and employing Jensen’s inequality, some new sufficient conditions for the exponential
synchronization of considered chaotic neural networks are derived in termsof linearmatrix
inequalities (LMIs). The obtained LMIs can be easily solved by any of the available software.
Finally, the numerical examples are provided to demonstrate the effectiveness of our
theoretical results.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Over the past few decades, there has been a fervent support to neural networks due to their wide applications in various
fields, such as pattern recognition, static image processing, combinatorial optimization [1–3]. A number of important and
interesting results have been developed for neural networks, for example, [4–11]. On the other hand, the communication
time of neuronsmay induce time delays in the interaction between the neuronswhen the neural networks are implemented
by very large-scale integrated electronic circuits. It has been shown that time delay is an important reason for oscillation,
divergence and instability in systems [12,13]. The large variety of methods are used to study the time delay. Among them,
the linearmatrix inequality (LMI) technique has been successfully used to deal with problems for neural networkswith time
delays [14–16]. Therefore, the stability analysis of delayed neural networks has been focused by the researchers in recent
years.

Markovian jump systems are a special class of hybrid systems,which is specified by two components, the first component
which refers to the mode, which is described by a continuous time finite state Markovian process and the second one
which refers to the state which is represented by a system of differential equation. Also, Markovian jump systems can be
defined as a special class of dynamical systems with finite mode operation due to random changes in their structure, such
as component failures or repairs, sudden environmental disturbance, changing subsystems inter connections, and so on.
The application of the Markovian jump system can be found in economic systems, modeling production system, network
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control systems, manufacturing systems, communication systems, and so on. Stability analysis results about Markovian
jump neural networks can be found in [17–22]. Moreover, the problems of H∞ finite-time boundedness and finite-time
H∞ state feedback stabilization for Markov jump systems partially known transition probabilities were discussed in [23].
The authors in [24] have studied about the stabilization and synchronization control of Markovian jumping neural networks
withmode-dependentmixed delays subject to quantization and packet dropout. The adaptive synchronization for stochastic
neural networks of neutral-type with mixed delays was studied in [25].

Also, it is well known that the chaotic neural networks have complex dynamical behaviors that possess some special
features [26]. Chaotic systems possess a typical characteristic due to small changes in their initial conditions. Over the
past two decades, the synchronization problem of chaotic systems has been widely analyzed due to its applications in
biology, chemistry, cryptography and some other nonlinear fields. Many useful approaches have been established for
the synchronization of chaotic systems, which include time-delay feedback control, adaptive control, impulsive control,
sampled-data control, manifold-based method, and so on. Since the synchronization concept introduced by Pecora and
Carroll in the pioneering work [27], an increasing interest has been devoted to the master–slave synchronization of chaotic
neural networks with delays. The authors in [28], have studied the synchronization problem of chaotic neural networks
with time delays, where controllers have been designed to achieve the synchronization of the considered neural networks.
In [29], the synchronization problem of stochastic neural networks with time delays has been considered by using the LMI
method and sufficient conditions have been derived to ensure that the master system synchronizes with the slave system.

On the other hand, the sampled-data control system has been studied extensively over the past few years. The analysis
of linear control systems is based on the fact that the signals at various points in the system are continuous with respect to
time. However, in some applications it is convenient to use one ormore control signals at discrete time intervals. The control
systems using one or more signals at discrete time intervals are known as sampled-data control systems. In a sampled-data
control method the signal at any one or more places is sampled and appears in the form of a pulse at periodic intervals. Also,
in sampled data control systems, choosing proper sampling interval is more important for designing suitable controllers
(see [30–32] for instance). The use of sampled-data control systems enables time sharing between different input signals
using the same control equipment. Different input signals can be sampled periodically by staggering sampling time, and
thus over the same control equipment number of inputs can be used. This arrangement of control reduces the cost of
control equipment. The sampled-data control theory has received much attention due to the powerful application in the
field of engineering. For example, the authors discussed robust sample-data control for uncertain dynamic systems in the
presence of missing data in [33], here the sample-data controller is presented in the form of linear matrix inequality. The
authors in [34], studied the uncertain nonlinear chaotic systems through a stochastic sample-data control to ensure the
robust synchronization. In [35], the authors have discussed the problem of exponential synchronization of neural networks
with mixed delays using sampled-data feedback control. The authors have discussed the sampled-data synchronization
problem of neural networks with discrete and distributed delays under variable sampling in the framework of input delay
in approach in [30].

Also, actuator saturation is inevitable in feedback control systems. If it is ignored in the design, a controller may wind up
the actuator, possibly in degraded performance or instability. A classical approach to avoiding such undesirable behaviors
is to add an anti-windup compensator to the original controller. On the other hand, higher performance may be expected
if a controller is designed a priori considering the saturation effect. The nonlinearity saturation is described by bounded
sector [36–41]. The authors have discussed the stabilization problem for sampled and saturated controlled systems in [42].
The synchronization problem has been considered for sampled and saturating actuators in [43], where the time-dependent
Lyapunov function has been constructed for synchronization of the master and slave neural networks.

Inspired by the above works, in this paper we study the exponential synchronization problem for Markovian jumping
chaotic neural networks with sample-data and saturating actuators. We emphasize that the sample-data with respect to
actuator saturation in presence of Markovian jumping and time varying delay for a chaotic neural networks undergoes
exponential synchronization with help of derived criteria by skillfully choosing the Lyapunov functional, which makes the
condition in this paper more effective than in [43]. Finally, numerical simulations are also exploited to demonstrate the
effectiveness and validity of the theoretical results.

The main improvements of this paper compared to [43,44] are as follows: (1) Although the importance of actuator
saturation has been widely recognized there is no related results have been established for exponential synchronization
in the presence of actuator saturation with sample data. In [43] only the local synchronization of the chaotic systems has
been investigated. (2) In order to over come the disturbancewe improvised ourwork by including theMarkovian jump term
to the proposed system which is not done in past research [43,44].

The rest of the paper is organized as follows. In Section 2, preliminaries and problem formulation is given. In Section 3,
we analyze the exponential synchronization problem forMarkovian jumping chaotic neural networkswith sample-data and
saturating actuators. Numerical simulations are given to verify our theoretical results in Section 4. Concluding remarks are
drawn in Section 5.
Notations: Throughout this section, Rn and Rm×n denote the n-dimensional Euclidean space and the set of all m × n real
matrices respectively. The notation X > Y (X ≥ Y ), where X and Y are symmetric matrices, means that X − Y is positive
definite(positive semi-definite). λmax(Q ) (λmin(Q )) denotes the maximum (minimum) of the eigenvalue of real symmetric
matrix Q . I and O represent the identity matrix and zero matrix. Let C([−d2, 0]; Rn) denote the family of continuously
differentiable functions ϕ from [−d2, 0] to Rn. The superscript ‘‘T ’’ represents the transpose and diag {. . .} stands for a
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