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a b s t r a c t

Several results regarding the stability and the stabilization of linear impulsive positive sys-
tems under arbitrary, constant, minimum, maximum and range dwell-time are obtained.
The proposed stability conditions characterize the pointwise decrease of a linear copositive
Lyapunov function and are formulated in terms of finite-dimensional or semi-infinite linear
programs. To be applicable to uncertain systems and to control design, a lifting approach
introducing a clock-variable is then considered in order to make the conditions affine in
thematrices of the system. The resulting stability and stabilization conditions are stated as
infinite-dimensional linear programs for which three asymptotically exact computational
methods are proposed and compared with each other on numerical examples. Similar re-
sults are then obtained for linear positive switched systems by exploiting the possibility of
reformulating a switched systemas an impulsive system. Some existing stability conditions
are retrieved and extended to stabilization using the proposed lifting approach. Several ex-
amples are finally given for illustration.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Linear positive systems [1] have been recently the subject of an increasing attention because of their natural ability
to represent many real-world processes such as, among others, communication networks [2,3], biological networks
[4–7], epidemiological networks [4,8], and disease dynamics [9]. Besides their applicative potential, linear positive systems
have been shown to exhibit a number of interesting theoretical properties of independent interest. For instance, it is now
well-known that linear copositive Lyapunov functions can be used in order to formulate exact stability conditions taking the
form of linear programs [10]. The design of structured and bounded state-feedback controllers [11,12] and certain classes
of static output feedback controllers [13] are known to be convex and hence easily tractable. The Lp-gains for p = 1, 2, ∞
can be exactly computed using convex programming and these gains are identical to the p-norm of the static matrix-gain
of the system [14,15]. The famous Kalman–Yakubovich–Popov Lemma has been shown to admit a linear formulation in
this setting [16]. Robust analysis results also nicely extend and simplify in this context, and often lead to necessary and
sufficient criteria for stability [12,15,17–19]. Their generalization to delay-systems with discrete-delays also led to the
surprise that the system is stable if and only if the systemwith zero delay is stable [12,20–22]. Extensions to deterministically
[23–26] or stochastically [27,28] switched systems have also been considered. Positive systems have also been recently
used as (conservative) comparison systems for establishing the stability of various classes of systems such as systems with
delays [29–32]. Finally, the design of interval observers heavily relies on the use of positive systems theory [33–35]. It was
notably shown in [35] that the observer-gain that minimizes the L∞-gain of map between the disturbance input and the
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observation error is independent of the output matrices of the error system, a result that mirrors that of [36] pertaining on
the state-feedback control of linear positive systems achieving minimum L1-gain.

We consider here the case of linear positive impulsive systems, a class of systems that seem to have been quite overlooked
until now as only very few results can be found; see e.g. [37–39]. Such systems can be used to represent certain classes of
biochemical, population or epidemiological models having deterministic jumps in their dynamics. They can also be used to
represent processes that can be represented as linear positive switched systems; see e.g. [26] for some examples including
epidemiology [40–42], traffic congestion models [43], etc. Impulsive systems are also known to be able to exactly represent
sampled-data systems as emphasized in [44–47]. Such systems are also interesting from a theoretical standpoint as they
can be useful for the analysis and design of interval observers for linear impulsive systems (and hence sampled-data and
switched systems) or for analyzing the stability of nonlinear impulsive, switched and sampled-data systems; see e.g. [37].

The goal of this paper is hence the derivation of novel stability and stabilization conditions for linear positive impulsive
systems using the concepts of arbitrary, constant, minimum, maximum and range dwell-times. The concept of minimum
dwell-time has been introduced by Morse in [48] in order to formulate stability conditions for general (i.e. not necessarily
positive) switched systems. The concept of average dwell-time has been proposed in [49] in order to obtain less conservative
conditions than by using minimum dwell-time conditions. Since then, a large body of the literature has been focusing
on these concepts as a way to efficiently characterize the stability of switched systems or, more generally, the stability
of hybrid systems; see e.g. [50]. The notion of minimum dwell-time has been revisited in [51] where novel sufficient
LMI conditions derived from mode-dependent quadratic Lyapunov functions were proposed. Based on a theoretical result
proved in [52], these conditions were later extended andmade necessary and sufficient in [53] through the consideration of
mode-dependent homogeneous Lyapunov functions. Analogous results using polyhedral Lyapunov functions have been also
obtained in [54]. Unfortunately, these conditions were inapplicable to uncertain systems and to control design because of
their complex nonlinear dependency in thematrices of the system. This problemmotivated the introduction of the so-called
looped-functionals, a particular class of indefinite (i.e. not necessarily positive definite) functionals having the advantage of
reformulating the complex conditions of [51] into conditions being affine/convex in the matrices of the system; see e.g.
[55–57], thereby extending the scope of the conditions to uncertain and nonlinear systems. Yet, these conditions were
difficult to apply in the context of control design because of the presence ofmultiple products between decisionmatrices and
thematrices of the system; see e.g. [56–59]. Clock-dependent conditions have been shown to provide an essential framework
for solving this latter problem as they produce stability conditions that are affine/convex in thematrices of the systemwhich
can be used for design purposes. Their computational complexity has also been shown to bemuch lower than that of looped-
functionals [59]. Since then, clock-dependent conditions have been used for the analysis and control of switched, impulsive,
sampled-data and LPV systems; see e.g. [47,60–68]. Such results have also been applied to more practical problems such as
fault tolerant control [69,70] or estimation [62,71].

The first part of the paper is similar to the ones in [47,72] where stability conditions are formulated in terms of the
decrease of a Lyapunov function of a given type. Unlike in the previous references where quadratic Lyapunov functions are
involved, we exploit here the positivity of the system and consider linear copositive Lyapunov functions [10]. The resulting
conditions are stated in terms of finite-dimensional or semi-infinite dimensional linear programs, which are then relaxed
into clock-dependent conditions using a lifting approach similar to that of [47,59,65,66]. Since linear copositive Lyapunov
functions are used here, the clock-dependent conditions consist of infinite-dimensional linear programs. This has to be
contrasted with the fact that, when quadratic Lyapunov functions are used, clock-dependent conditions take the form of
infinite-dimensional semidefinite programs, which may be harder to solve that their linear counterpart. Three possible
ways for efficiently checking these conditions are then proposed. The first one relies on a discretization approach which is
largely inspired from [60] and where the infinite-dimensional decision variable is assumed to be continuous and piecewise
linear. This method has also been considered, in turn, in [59,61,62,64,67,73]. By doing so, the infinite-dimensional program
becomes finite-dimensional and can be solved using conventional algorithms such as interior point methods; see e.g. [74].
The second method is based on Handelman’s theorem [75] which characterizes the positivity of a given polynomial on a
compact polytope by formulating it as a nonnegative linear combination of products of the (affine) basis functions that
describe the polytope. This result has been applied in various contexts [12,15,76,77] and, notably, for characterizing the
robust stability of uncertain linear positive systems in [12,15]. An important property of this approach is that the obtained
characterization for the positivity of the polynomial can be exactly formulated as a finite-dimensional linear program,which
can again be solved using well-known approaches. Finally, the last one is based on Putinar’s Positivstellensatz [78] which
characterizes the positivity of a given polynomial on a compact semialgebraic set by formulating it as a weighted linear
combination of the basis functions that describe the set andwhere theweights are sumof squares polynomials. The resulting
problem takes, in this case, the form of a finite-dimensional semidefinite program [79] that can be solved using standard
semidefinite programming solvers such as SeDuMi [80] or SDPT3 [81] used in conjunction with the package SOSTOOLS [82].
It is notably emphasized that these relaxations are asymptotically exact meaning that when the discretization order, the
number of products of basis functions or the degree of the sum of squares weights are sufficiently large, then the relaxed
problem is feasible if the original one is. Several examples are considered in order to demonstrate the practicality of the
relaxed conditions and to compare them in terms of number of variables and solving time. The results are then extended to
control design by considering the clock-dependent conditions and the dual impulsive system [26,83]. By finally exploiting
the possibility of formulating a switched system as an impulsive system, we derive a number of stability conditions for
linear positive switched systems. Notably, we recover stability conditions similar to those in [25,26] which are the positive
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