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A B S T R A C T

Hybrid combination of Lorentz forces and impulsive thrusts, provided by modulating spacecraft's electrostatic
charge and propellant usage, respectively, is proposed for formation flight applications. A hybrid linear quadratic
regulator, previously proposed in another work using a differential orbital elements-based model, is reconsidered
for a Cartesian coordinates-based description of the spacecraft's relative states. In addition, the effects of adopting
circular versus elliptic reference solutions on the performance of the controller are studied. Numerical simulation
results are provided to demonstrate the functionality of the proposed controller in the presence of J2 perturba-
tions, and to illustrate the improvements gained by assuming an elliptic reference and incorporating auxiliary
impulsive thrusts.

1. Introduction

Formation flight of spacecraft, involving groups of multiple satellites
that orbit in proximity of each other, has seen a lot of renewed interest in
recent years. This is particularly because of the improvements they offer
over single-spacecraft missions in terms of affordability and robustness,
and is facilitated by recent technological and scientific developments that
enable reliable formationmissions. One potential approach for spacecraft
to achieve and maintain formation is via Lorentz-augmented control. The
idea of using Lorentz forces generated by the interaction of actively-
modulated charges on a spacecraft with the geomagnetic field in order
to produce useful thrust was first proposed in Ref. [1].

In Ref. [2], analytical solutions of the equations of motion for
Lorentz-augmented spacecraft in various situations were provided;
however, only constant specific charges and circular reference frames
were considered. The equations of motion linearized relative to a circular
reference orbit were presented in Refs. [3,4], and are known as the
Hill-Clohessy-Wiltshire (HCW) equations. Also using a spherical co-
ordinates description similarly to [2], a three-spacecraft formation
reconfiguration problem was considered in Ref. [5], but assuming pro-
portional derivative-type feedback control provided by modulating the
specific charge. Abandoning the circularity assumption on the chief
spacecraft's orbit, Ref. [6] considered both circular and elliptic references
using Cartesian coordinates for relative motion. In that work, step-wise
charge control based on the linearized model, as well sequential

quadratic programming using the nonlinear model were proposed. The
relative motion equations that allow for elliptic reference orbits are
known as Tschauner-Hempel (TH) equations, and were provided in Refs.
[7,8], among others.

In contrast to the use of spherical or Cartesian coordinates to describe
the relative motion of spacecraft in formation, an alternative is to focus
on the changes in the mean orbital elements, hence ignoring the short-
term oscillations. Examples of past literature that make use of (mean)
orbital elements (or their differences) for formation control are [9,10],
and those of works that involve Lorentz-augmentation in particular are
[11,12]. This approach is primarily motivated by the fact that, in many
formation flight missions, only secular changes are of importance when
determining tracking errors. While recognizing the value of this approach
(especially in the presence of J2 perturbations), the present authors have
chosen to work directly with the Cartesian description of the spacecraft's
absolute and relative positions. It is expected that such an approach will
be better suited to applications for which short-term errors do matter. In
order to demonstrate the effectiveness of the proposed controller and its
comparability with the mean orbital elements-based techniques, J2 in-
fluences are modelled in all simulation results to be presented. It is shown
that the required specific charge and thrust magnitudes are still
reasonable.

Hybrid formation control of spacecraft using continuous and impul-
sive forces in tandem is considered in this paper, based on a Cartesian
coordinates-based model, and the methodology is applicable to both
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circular and elliptic reference orbits for the chief spacecraft. The work
presented in Ref. [6] considered the in-plane and out-of-plane motions
separately when using the linearized model, and resorted to numerical
approaches based on nonlinear trajectory design in order to treat more
general cases with smaller errors. On the other hand, explicit expressions
for the continuous and impulsive forces are presented in this document
(although the associated Riccati equation still needs to be integrated
numerically), and the complete three-dimensional motion is treated in a
unified manner. The reference solution presented in Ref. [13] for elliptic
orbits, in turn built upon the TH equations as presented in Ref. [8], are
adopted in this work.

As demonstrated in Refs. [14,15] by studying the system's Gramian
matrix, there is always one direction along which Lorentz-augmented
formation is not controllable. This is because the Lorentz force is al-
ways perpendicular to the plane defined by the geomagnetic field vector
and the spacecraft's velocity relative to the field. Similarly, controllability
in the in-plane motion of equatorial reference orbits was demonstrated in
Ref. [6], but out-of-plane motion was initially ignored in that analysis
(and later on treated as uncontrolled drift). Motivated by a desire to
overcome this controllability issue, the present work features a hybrid
formulation that combines continuous-time Lorentz forces with impul-
sive thrusts, a problem that was treated in Refs. [12,14] based on a mean
orbital elements-based model (as opposed to the current Cartesian
formulation), as well as in Ref. [16]. As opposed to [16] that used tra-
jectory optimization techniques and the pseudo-spectral method (fol-
lowed by a posteriori distribution of the required control accelerations
into continuous and impulsive contributions), the work described here
uses a hybrid linear quadratic regulator (LQR) scheme based on that used
in Refs. [12,14].

The primary rationale behind using LQR in the present work is that it
is a well-established optimal control method that allows the user to trade
off control effort against state errors. It also lends itself well to a hybrid
formulation and the associated optimization, as delineated in the afore-
mentioned references. Use of LQR in the context of formation flight was
also seen in Ref. [17], assuming a discrete-time system and limiting the
study to in-plane motion; in Ref. [18], using low-thrust continuous forces
(not Lorentz forces) with circular reference orbits and accommodating
gravitational disturbances; and in Ref. [19], also using continuous forces
but allowing for the reference orbit's ellipticity.

The organization of this paper is as follows. A mathematical model of
formation flight subject to Lorentz and thruster forces is constructed in
Section 2 using relative motion equations in Cartesian coordinates. The
hybrid LQR scheme to be used for control purposes is described in Section
3, along with circular and elliptic reference orbit solutions to be adopted.
The functionality and performance of the proposed hybrid controller are
demonstrated in Section 4 via numerical simulations, and the effects of
reference orbit selection and incorporating auxiliary impulsive thrust on
the performance are studied. Lastly, concluding remarks are made in
Section 5.

2. Mathematical modelling of formation flight

This section establishes the mathematical model of the motion, to be
used for control purposes in Section 3. The relationships that describe the
geometry of motion are presented in Subsection 2.1, and the motion
equations in the presence of applied forces are provided in Subsec-
tion 2.2.1

2.1. Kinematics

The following reference frames, illustrated in Fig. 1, are defined and
used throughout the document:

∙ F G – Earth-Centred Inertial (ECI) frame: origin at Earth's centre, 1-
axis towards the vernal equinox, 3-axis towards Earth's North pole

∙ F P – Perifocal frame: origin at Earth's centre, 1-axis towards the
perigee of the chief's orbit, 3-axis normal to the chief's orbital plane

∙ F H – Hill frame: origin at the chief's centre of mass, 1-axis pointing
away from Earth's centre, 3-axis normal to the chief's orbital plane

The position vectors, measured from Earth's centre, of the chief and
the deputy are given by rc

→
and rd

→
, respectively, the components of which

in the ECI frame are given by column matrices, rc;G and rd;G. Rotation
matrices can then be used to obtain their corresponding Hill frame
representations:

rc;H ¼ CHGrc;G ; rd;H ¼ CHGrd;G (1)

where CHG is the rotation matrix from F G to F H which can be evalu-
ated, along with its rate of change, as follows [19]:

CHG ¼
"
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(2b)

where hc;G ¼ r�c;Gvc;G denotes the ECI representation of the chief's orbital
angular momentum vector. The derivatives in Eq. (2b) can be evaluated
using the following identity for a generic x:

d
dt

�
x
jxj
�

¼ _x
jxj �

j _xj��xj2 x ¼ _x
jxj �

x⊺ _x��xj3 x (3)

in conjunction with the following known relationships:

d
dt
ðrc;GÞ ¼ _rc;G ¼ vc;G (4a)

d
dt
ðhc;GÞ ¼ _hc;G ¼ r�c;G€rc;G ¼ r�c;Gfp;Gðrc;GÞ (4b)

d
dt

�
h�
c;Grc;G

�
¼ _h

�
c;Grc;G þ h�

c;G _rc;G (4c)

where vc;G and fp;G consist of the ECI components of the chief's absolute
velocity vector and the perturbation forces (per unit mass) experienced
by the chief. Lastly, noting that the spacecraft's relative position is given
by ρ≜rd � rc, taking the difference of the position vectors in Eq. (1) and
differentiating with respect to time yields:

ρH ¼ CHGρG (5a)

_ρH ¼ _CHGρG þ CHG _ρG (5b)

Fig. 1. Reference frames: (G) ECI, (P) perifocal, and (H) Hill.

1 See Nomenclature at the end of the paper.
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