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A B S T R A C T

Reaction wheels, as one of the most commonly used actuators in satellite attitude control systems, are prone to
malfunction which could lead to catastrophic failures. Such malfunctions can be detected and addressed in time
if proper analytical redundancy algorithms such as parameter estimation and control reconfiguration are
employed. Major challenges in parameter estimation include speed and accuracy of the employed algorithm.
This paper presents a new approach for improving parameter estimation with adaptive unscented Kalman filter.
The enhancement in tracking speed of unscented Kalman filter is achieved by systematically adapting the
covariance matrix to the faulty estimates using innovation and residual sequences combined with an adaptive
fault annunciation scheme. The proposed approach provides the filter with the advantage of tracking sudden
changes in the system non-measurable parameters accurately. Results showed successful detection of reaction
wheel malfunctions without requiring a priori knowledge about system performance in the presence of abrupt,
transient, intermittent, and incipient faults. Furthermore, the proposed approach resulted in superior filter
performance with less mean squared errors for residuals compared to generic and adaptive unscented Kalman
filters, and thus, it can be a promising method for the development of fail-safe satellites.

1. Introduction

Reaction wheels are the most commonly used actuators in spacecraft
attitude control system; they are prone to malfunction which could lead
to catastrophic failures. Such malfunctions can be detected and addressed
in time if proper analytical redundancy algorithms such as parameter
estimation and control reconfiguration are employed. Major challenges in
parameter estimation include speed and accuracy of the employed
algorithm. The problem of accurately and promptly tracking changes in
system parameters for mechanical systems has been of constant interest
for the purpose of system monitoring and control [1–4]. Analytical
redundancy, as one of the major subsidies in this field, has evolved to
remedy the shortcomings of hardware redundancy for complex systems.
Such shortcomings include major budged constraints, space limitations
for design and manufacturing, concerns with safety and reliability, etc.
One of the major challenges in system monitoring and fault detection is
to achieve the ability for tracking sudden changes in non-measurable
system parameters; this becomes more challenging when the system
under study is nonlinear and complex. Reaction wheels (RW), as one of
the most commonly used actuators in spacecraft attitude control system,
can be considered as such and are prone to hardware failures [5]. Sudden
changes in non-measurable RW parameters can occur while operating in

space. If such changes are not tracked precisely and with reasonable
delay, catastrophic failures could occur. Therefore, an algorithm that
could estimate parameters and track sudden changes accurately can help
developing fail-safe satellites where hardware redundancy is not possible
due to limited space and power.

Several researchers have examined the problem of fault detection,
isolation, and identification [1–4]. Gertler [1] has surveyed all model-
based methods for fault detection and concludes that major quality
issues for failure detection algorithms are isolability, sensitivity, and
robustness. Marzat et al. [2] have reviewed model-based fault diagnosis
approaches for aerospace systems; these approaches include expert
systems [6], neural networks [7–9], support vector machine (SVM)
[10–12], principal component analysis (PCA) [13–16], parameter
estimation [17,18], Kalman filters (KF) [19–21], unscented Kalman
filters (UKF) [22–26]. More recently, Gao et al. [3,4] have comprehen-
sively reviewed fault diagnosis approaches and their applications from
model and signal-based perspectives. The reviewed literature suggests
advantages of using Kalman filters as: small false alarm rate, short
detection delay, robustness to model uncertainty, and isolation of
simultaneous faults with the only shortcoming being restrictive
Gaussian noise assumption. In addition, parameter estimation using
Kalman filters is considered as an effective approach for structural
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damage detection with the shortcoming of non-applicability for on-line
identification due to time delays. When sudden changes are expected,
off-line tuning of the estimators is not acceptable. Therefore, an
approach that can track non-measurable system parameters is re-
quired. In the previous study, the authors of this paper have proposed a
parameter tracking approach based on adaptive unscented Kalman
filters [24]. The suggested approach suffers from some limitations to be
addressed in the present paper as follows: (1) The system model used
in [24], neglects some of the stochastic components that could in fact
adversely affects simulation results. In the current study, missing
components are considered in the system model. (2) The adaption
system in [24] considers only system and measurement noise covar-
iances and the optimization process is done off-line. This approach
suffers from lack of agility when abrupt faults occur, even after
algorithm parameters are optimized. In addition, this approach was
not examined for incipient faults. In the present investigation, states
error covariance matrix is also considered when abrupt changes occur
to ensure agile tracking of non-measurable system parameters. (3) The
fault scenario in [24] only includes abrupt fault while in practical
situations, transient, intermittent, and incipient faults also occur. In
the current study, all mentioned fault cases are considered.

The contents of this paper are organized as follows: the standard
UKF formulation is presented in Section 2 while Section 3 explains the
proposed enhancement scheme for covariance adaptation. In Section 4,
the mathematical model of the reaction wheel system is described while
Section 5 presents results and discussions on four major fault scenarios
at two noise levels. Finally, the conclusions of the present investigation
are presented in Section 6.

2. Standard UKF

In order to explain the proposed approach, the parameter estima-
tion with the assumption that the full state measurement is available is
first presented based on the standard UKF.

Consider the following nonlinear discrete stochastic system
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where X ∈k
n is the state vector at time step k , Z ∈k

m is the
measurement vector, w ∈k

n is the additive process noise, v ∈k
m is

the additive measurement noise, f (∙) is a nonlinear process model, and
g(∙) is nonlinear measurement model. The process and measurement
noises are assumed to be uncorrelated zero-mean Gaussian white
noises with covariances E w w Q δ[ ] =k j

T
k kj, E v v R δ[ ] =k j

T
k kj, respectively.

The process noise covariance Qk is non-negative definite, the measure-
ment noise covariance Rk is positive definite, and δkj is the Kronecker-δ
function. When the system equation is in continuous form as

x f x u t ẇ = ( , , ) + (2)

It can be transformed to the discrete domain using

∫X X f x u t dt= + ( , , )k k
k t

k t
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where tΔ or Ts is discretization step size or sampling time. The
integration can be carried out using the fourth order Runge-
Kutta(RK4) method. The formulation for parameter estimation of a
nonlinear discrete stochastic system using UKF [27] with minor
modifications [28] can be described in the following steps:
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2) Establish symmetric sigma points about the state esti-
mate
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3) Predict mean and covariance of states
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4) Instantiate sigma points through measurement model

gY χ= ( ˆ )i i (9)

5) Predict mean and covariance of measurements
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6) Predict cross covariance
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7) Calculate gain and update
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where the n κ P( + ) ixx
− terms denote the scaled ith rows or columns of

Pxx
− , W m( ) is the component weight for mean calculation, W c( ) is the

component weight for covariance calculation, n is the dimension of the
states, κ ≥ 0, α0 ≤ < 1, and λ ≥ 0 are the control factors for the spread
of sigma points, y is the mean of variable y, Pyy is the covariance of
measurements matrix, x is the n-state random variable, x̂ is the initial
sigma point, Pxx is the posteriori estimates covariance matrix, Yi is the
result of instantiated sigma points through measurement model, Pxy is the
cross covariance matrix, K is the Kalman filter gain, and + and -
superscripts show the pre-process and post-process values at each
iteration, respectively.

3. Adaptive scheme

The adaptive scheme consists of three major parts: (1) adapting
process and measurement noises, (2) detecting fault occurrence, (3)
adapting states/parameters covariance matrix.

3.1. Process and measurement covariance

The following adaptive mechanism is used to adjust process and
measurement noise covariance matrices on-line [29]. The approach is
adapted from [24] where the algorithm parameters are optimized off-
line for specific abrupt fault scenarios. First Eq. (7) is re-written as
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