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a b s t r a c t

Trajectory design increasingly leverages multi-body dynamical structures that are based on an under-
standing of various types of orbits in the Circular Restricted Three-Body Problem (CR3BP). Given the
more complex dynamical environment, mission applications may also benefit from deeper insight into
the attitude motion. In this investigation, the attitude dynamics are coupled with the trajectories in the
CR3BP. In a highly sensitive dynamical model, such as the orbit-attitude CR3BP, periodic solutions allow
delineation of the fundamental dynamical structures. Periodic solutions are also a subset of motions that
are bounded over an infinite time-span (assuming no perturbing factors), without the necessity to in-
tegrate over an infinite time interval. Euler equations of motion and quaternion kinematics describe the
rotational behavior of the spacecraft, whereas the translation of the center of mass is modeled in the
CR3BP equations. A multiple shooting and continuation procedure is employed to target orbit-attitude
periodic solutions in this model. Application of Floquet theory and Poincaré mappings to identify initial
guesses for the targeting algorithm are described. In the Earth–Moon system, representative scenarios
are explored for axisymmetric vehicles with various inertia characteristics, assuming that the vehicles
move along L1/L2 Lyapunov orbits as well as distant retrograde orbits. A rich structure of possible periodic
behaviors appears to pervade the solution space in the coupled problem. The stability analysis of the
attitude dynamics for the available families is included. Among the computed solutions, marginally
stable and slowly diverging rotational behaviors exist and may offer interesting mission applications.

& 2016 IAA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Advances in orbital mechanics have demonstrated novel mission
applications that exploit multi-body dynamical structures. The vari-
ety of potential applications range from astrophysical observatories,
to solar sails, and to redirected natural bodies. When the attitude
dynamics is coupled to a multi-body orbital regime, the spacecraft
may also manifest complex rotational behaviors. Within the set of
chaotic responses that is typical in a multi-body system, basic fun-
damental dynamical structures are also apparent and may aid in
mission design when the attitude dynamics are incorporated.
Periodic or quasi-periodic structures may potentially support ACS
(Attitude Control System) operational modes for continuous data
acquisition or communications, with coarse pointing requirements. A
subset of the center subspace might be employed for safe-mode or
long-term configurations. For example, an asteroid or a space station
placed in a marginally stable subspace associated with the attitude

modes is more likely to avoid tumbling in the long-term. Finally,
manifold structures may guide large attitude slews.

In trajectory design, the Circular Restricted Three-Body Problem
(CR3BP) is an approximation for the actual multi-body system, yet, its
use is pivotal to grasp and employ the fundamental structures un-
derlying the more complex dynamics. Thus, to explore the funda-
mental coupled behaviors, it is important to first understand the
attitude dynamics when it is coupled to the CR3BP orbital regime.
The earliest investigations from Kane, Marsh and Robinson consider
the attitude stability of different satellite configurations, assuming
that the spacecraft is artificially maintained precisely at the equili-
brium points [1,2]. Successive studies introduce Euler parameters,
i.e., quaternions, and Poincaré maps to explore the dynamics of a
single body, one that remains fixed at the Lagrangian points [3,4]. The
effects of the gravity torque along libration point orbits are examined
by Wong, Patil and Misra for a single rigid vehicle in the Sun–Earth
system [5]. Wong, Patil and Misra select Lyapunov and halo orbits for
their investigation, and assume reference trajectories that are ex-
pressed in linear form; consequently, the results are acknowledged to
apply to relatively small orbits close to the equilibrium points. In-
corporating another simplification of the CR3BP, i.e., the Hill problem,
Sanjurjo-Rivo et al. numerically reproduce the orbit-attitude coupled
dynamics of a large dumbell satellite on halo and vertical orbits in
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the Earth–Moon system [6]. The application of Hill equations is
limited to the vicinity of the smallest body in the system, when such
a primary has practically negligible mass compared to the other at-
tractor. Assuming that the spacecraft is in fast rotation, the attitude
dynamics can be decoupled from the orbital dynamics by averaging
the equations of motion over the “fast” angle [6]. Under this condi-
tion, it is demonstrated that incorporating sufficiently elongated
structures may impact the stability of halo and L2 vertical orbits in
the Hill problem [7]. Later, Guzzetti et al. numerically investigate the
coupled orbit and attitude equations of motion using the Lyapunov
family as reference orbits and without the simplifications of the
CR3BP nonlinear dynamics, but the rotation of the vehicle is limited
to the orbital plane [8,9]. Guzzetti et al. also incorporate solar ra-
diation pressure and simple flexible bodies in the investigation. The
full three-dimensional coupled motion is explored by Knutson and
Howell for a spacecraft comprised of multiple bodies in nonlinear
Lyapunov and halo reference orbits [10,11]. Both Knutson and Guz-
zetti dedicate significant effort to identify conditions that determine
bounded attitude solutions relative to the rotating frame in the
CR3BP along nonlinear reference trajectories. Attitude maps are
proven useful to recognize the orbital characteristics and the body
inertia properties that enable the spacecraft to maintain its initial
orientation with respect the rotating frame [12,13]. Most recently,
Meng, Hao and Chen analyze the case of a dual-spin satellite in
various halo orbits and, employing a semi-analytical expansion of the
gravity torque, identify the main frequency components of the sub-
sequent motion [14].

Along with stability diagrams based at the equilibrium points,
mapping techniques as well as frequency analyses, investigation of
periodic solutions may contribute to an understanding of the attitude
dynamics when it is coupled with the CR3BP. In this investigation,
solutions are sought that are simultaneously periodic in both the
orbital and attitude states, when viewed in the rotating frame in the
CR3BP. As is generally true for trajectories in the CR3BP, such orbit-
attitude coupled solutions are expected to transition to higher-fide-
lity models with various degrees of success. A first example of such
orbit-attitude periodic motion in the CR3BP is presented in [15]. The
solution in [15] is limited to a disk-like spacecraft moving along L1
Lyapunov orbits in the Earth–Moon system. Such behavior is also
identified as a specific bifurcation from a reference elementary mo-
tion. The bifurcating solution is then corrected to render a precisely
periodic dynamical solution using a single shooting algorithm. The
work in [15] is evolved into a more systematic approach to identify
orbit-attitude periodic behaviors in the CR3BP. In this investigation, a
multiple-shooting formulation is described, one that is more gen-
erally applicable to the computation of complex solutions. Along
with an improved numerical algorithm, the exploration of alternative
reference trajectories, e.g., L2 Lyapunov and distant retrograde orbits,
and spacecraft topologies is included. An additional technique for the
identification of periodic responses, i.e., Poincaré mapping, is also
applied to the coupled orbit-attitude problem. Finally, the challenges
in attempting to recognize ordered and predictable behaviors in
higher-fidelity models is acknowledged. Yet, orbit-attitude periodic
solutions from a simplified coupled model may be the stepping stone
to identify and leverage potential natural motion in the actual –more
dynamically complex – operational environment.

2. Dynamical model

Consider a single rigid spacecraft in the gravitational field ema-
nating from two massive bodies P1 and P2. Assume that the bodies P1
and P2 are moving on circular orbits about their common barycenter,
and their motion is unaffected by the presence of the spacecraft
(whose mass is negligible compared to the masses of P1 and P2). The
translational motion of the space vehicle is conveniently described by

the Cartesian position coordinates (x, y, z) of the spacecraft center of
mass relative to the barycenter of the system, as measured in a frame
that rotates at the planetary system angular rateΩ. At time t¼0, the

rotating frame x̂ , ŷ , ẑ , is aligned to the inertial frame X̂ , Ŷ , Ẑ . At
successive instants of time, the rotating frame is defined such that P1
and P2 remain on the x̂-axis and ẑ is equal to the normal vector Ẑ of
the planetary orbiting plane, as depicted in Fig. 1. Referring to the
figure, the body frame to describe the spacecraft orientation is also

depicted, rendered by the tern of unit vectors b̂1, b̂2, b̂3. In defining
kinematical quantities, the notation •ca indicates that the motion of a
generic c frame is observed from a generic a frame. For convenience, i
denotes the inertial frame, r the rotating frame and b the body frame.

The system equations are normalized, such that the total mass
of the system, the distance between the two attractors, the uni-
versal gravitational constant and the angular frequency Ω are
unitary. The normalized period of P1 and P2 in their orbits about
their barycenter is equal to π2 . After the normalization, the pla-
netary system is dynamically represented by the mass parameter
μ only, which is defined as the ratio between the mass of P2 and
the total mass of the system, neglecting the mass of the spacecraft
(e.g., μ ≈ × −1.215 10 2 for the Earth–Moon system). Assuming the
mass of P1 is greater than mass of P2, the location of P1 along the
x̂-axis in nondimensional units is μ− , whereas P2 is located at μ−1
nondimensional units from the barycenter.

To reproduce the orbital dynamics of the spacecraft, the gravity
force is modeled neglecting the finite extension of the vehicle. Ac-
cordingly, the orbital behavior of the vehicle is equivalent to the re-
sponse of a point-mass located at the center of mass of the vehicle.
Perturbations that are equally significant when compared to the
actual mass distribution, such as the solar radiation pressure, are also
neglected in this simplified analysis. The resulting problem is familiar
as the Circular Restricted Three-Body Problem (CR3BP), which is
encapsulated in the following normalized scalar equations:
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Fig. 1. Frame representations in the coupled orbit-attitude CR3BP. The blue vectors
indicate the inertial frame, the black vectors define the CR3BP rotating frame, the
red vectors represent the body frame. (For interpretation of the references to color
in this figure caption, the reader is referred to the web version of this paper.)
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