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In this article, we show the optimal total delta velocity for bi-elliptic and bi-parabolic (through infinity) transfers
between non-coaxial boundary orbits. The bi-parabolic transfer is cotangential.

1. Introduction

Many studies have focused on solving the problem of impulsive
transfer between given orbits. Hohmann provided critical developments
in the theory of impulsive orbital transfers [1]. Another study presented a
comprehensive review of works on this problem [2]. Battin presented the
geometrical properties of optimal two-impulse transfer [3]. Lawden
presented a fundamental result and introduced a primer vector satisfying
the necessary conditions for optimality of the total delta velocity [4].
Horner obtained an analytical solution that minimises the total delta
velocity impulse between fixed points in the initial and final orbits with a
variable transfer angle [5]. Another study [6] showed that in a specific
case [5], the optimum two-impulse transfer from an inner orbit to an
outer coplanar terminal consisting of a radial distance and a velocity
vector is a transfer from the pericentre of the inner orbit. Similarly, if the
transfer is from an inner terminal to an outer orbit, the apocentre of the
transfer orbit is tangential to the final orbit. One study considered the
problem of bi-elliptical transfer between circular coplanar orbits [7].
Another [8] compared Hohmann-type two-impulse trajectories with
three-impulse bi-elliptical trajectories to solve the problem of transfer
between coaxial orbits with the same directional axes. Herein, we study
optimal bi-elliptic transfer with transfer orbits having a fixed apogee.
This research is based on the equations presented in Ref. [6]. The ob-
tained result allows us to generalise previous results [7,8] for bi-elliptic
transfers between non-coaxial elliptical orbits.

2. Solution of optimal Bi-elliptic transfer problem
The geometrical shape of initial and final orbits is described by their
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eccentricities and apogee radii. Let r; and v be the position and velocity
vector, respectively, at fixed point P with true anomaly f. Let ry and v3
be the position and velocity vector, respectively, at fixed point Q with
true anomaly f3 (vo, V3, 1, and ry are coplanar). The angle that specifies
the separation between the major axes of the initial and final orbits is not
fixed. The transfer trajectory consists of two elliptical transfer orbits with
the same fixed apogee radius' magnitude r, and free transfer angles 6;
and 6,. The first transfer orbit is formed by applying the impulse Av; =
V1 — Vg at point P (velocity becomes v;). The impulse Av, = vo, — V1, is
applied at the apogee of the first transfer orbit to form the second transfer
orbit (with same apogee radius r,) which intersects the final orbit at
point Q. The impulse Av, = v3 — v, changes the velocity v, of the second
transfer orbit to velocity vs at point Q (Fig. 1).

The problem is to choose the transfer orbits such that the total
delta velocity.

AVH[Z = AV[ + Ava + AVZ (1)

is minimized.  Let impulse Av, be applied tangentially at the apogee of
the first transfer orbit:

Ay, = \//’lPZ/ra - \/,upl/rm 2)

where y is the gravitational parameter and p; and p, are the semi-latera
recta of the transfer orbits. In this case, impulse Av; must support the
motion (cosp, >0, where ¢, is the thrust angle at point P (Fig. 2)), and
from Ref. [6], we have that its optimal magnitude must be
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Fig. 1. Scheme of bi-elliptic transfer.

Fig. 2. Scheme of trust angles.

Avi = \/up1[ra+
2
- \/V?,, + <V09 +/2ur [(r + ra)/ra) )

2ure/(r1 +14) /11

3

where vy, is the radial component and vy, the transverse in-plane
component of vector vy. Therefore, we have a minimum for the delta
velocity Av; + Av, of the transfer from the initial orbit to the second
transfer orbit. Impulse Av, must oppose the motion (cos ¢, < 0, where ¢,
is the thrust angle at point Q (Fig. 2)), and from Ref. [6], we have that its
optimal magnitude must be

Avy =\ 2ure/(r, +ry) /12 — \/PE/ra
8+ (o= V)

4

where v3, is the radial component and v34, the normal in-plane compo-
nent of vector vs;. By adding Egs. (2)-(4), we find the solution of the
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optimal bi-elliptical transfer between coplanar orbits with fixed r,:

2
Avins =/2ra] (ry r0) /11 = \/ B+ (voo V20 [+ 1) )

7\ 2ure/(ra+714) /12— \/V%r—‘r (V3g— \/Zyrz/(rz—i-ra)/ra)z.
5)

Remarkably, Equation (5) for the total delta velocity does not include
the semi-latera recta of the transfer orbits and transfer angles, which are
(Eq. (41) and (42) from Ref. [9])

2uriry (T4 COS @ — 1 6: Ty COS @ — 1y
P = s n—_—= : s (6)
71+ Fa \Fa — 11 COS @, 2 (ry+n)sin g,
2uryry (12 — Iq COS @, 2 60, 1, —1r,COS @,
P2 = ,tan - = —+ )
3+ Ty \Fa — 12 COS o, 2 (ratr)sing,
where (Egs. (38) and (39) from Ref. [9]):
Vor
tan ¢, = (cos ¢, >0), 8)
Vog + /2ury [ (r) +14) /T4
tan Al (cos ¢, <0) (©)]
P = ()
Vig — A/ 2ury [(ry + 1) /T4 7
3. Analysis

The three-impulse transfer between two elliptical orbits is optimal
relative to the rs,/r, ratio and true anomalies f; and f;. The analysis
below describes the conditions under which three-impulse transfer is
better than two-impulse transfer.

If Avy = 0, then the second transfer orbit is the same as the final orbit
and r, = r3, (3, is the apogee radius of the final orbit). From Egs. (4) and
(5), it follows that
2urse/(r1 + 13q) /11

Avys| =Vt

Ta=T3a

— \/V(Z), + (V()g +\/2ur /(r) + r3a)/r3,,)2. (10)

where v3, is the apogee velocity of the final orbit.

If
0A
(ri vl”z) — \/E Vv 7 <1 + cos ¢, (r_1+2>>
Ua Jlrmre V2N +11/r30) "3
+¢3/2(1 +c05(p2<r—2+2>) <0
(L4 r1/rs) 3

an

(total delta velocity Avys decreases when r, increases and cos ¢, < 0),
then we have r, >rs,, that is, bi-elliptic transfer is better than two-
impulse transfer (corresponding to ry/r; >15.58 [7] with cos¢, =1,
cos ¢, = —1, and r3, = r, for circular boundary orbits).

If r,—o0, then bi-elliptic transfer becomes bi-parabolic transfer (also
called bi-elliptic through infinity):

2 2
Aves = Avs|, o = \/Z — Vo + 1/—” -3 12)
r n
and
> 0,
pil,,_.. =2ri cos’y,, tan— = coty, = coty,, (13)
Fa—co
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