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A B S T R A C T

The minimum-fuel orbital transfer is analyzed in the case of a launcher upper stage using a constantly thrusting
engine. The thrust level is assumed to be constant and its value is optimized together with the thrust direction. A
closed-loop solution for the thrust direction is derived from the extremal analysis for a planar orbital transfer.
The optimal control problem reduces to two unknowns, namely the thrust level and the final time. Guessing and
propagating the costates is no longer necessary and the optimal trajectory is easily found from a rough
initialization. On the other hand the initial costates are assessed analytically from the initial conditions and they
can be used as initial guess for transfers at different thrust levels. The method is exemplified on a launcher
upper stage targeting a geostationary transfer orbit.

1. Introduction

Mass minimization is a major concern for the design of launch
vehicles. The fuel required to reach the targeted orbit depends on both
the thrust level and the thrust orientation along the trajectory. Finding
the minimum-fuel trajectory is an optimal control problem that can be
addressed by the Pontryaguin Maximum Principle (PMP). Due to its
utmost importance, this problem has received a considerable attention
from academics and industrials since the beginning of the space age
[1–4] and it is still an active topic of research. We can distinguish the
impulsive formulation [5–9] which assumes instantaneous velocity
changes and the continuous formulation which accounts for the engine
limited thrust level [10,11]. Depending on the available acceleration
level, we can also separate the high-thrust and the low-thrust case
which requires specific solution methods.

In a few cases, when the dynamical model is sufficiently simple, an
analytical solution may be derived from the PMP necessary conditions.
Among such well-known solutions for minimum-fuel trajectory pro-
blems, we can mention the following ones.

• The Goddard’s problem [12] for a vertical launched rocket.

• The flat Earth model with constant gravity and constant acceleration
[1,13]

• The Edelbaum’s model for a low thrust transfer between circular
orbits [2]

The flat Earth model and the constant acceleration model do not
have the sufficient representativeness to correctly assess the launcher

optimal performance [14]. The problem must be formulated in a
central gravity field and considering the actual engine thrust level.
Depending on the launcher and the mission specifications, the thrust
level may be either prescribed (in that case the problem is equivalent to
a minimum-time problem) or freely optimized between some bounds
[15]. The thrust direction may also be restricted due to path con-
straints.

Efficient approaches have been developed for the endo-atmospheric
leg of an ascent trajectory accounting for stringent aerodynamics
constraints, and closed-loop command laws have been derived com-
pliant with an on-board guidance [16–18]. For the exo-atmospheric
flight closed-loop solutions relying on a linear gravity approximation
prove accurate enough regarding the terminal orbit constraints [19].
On the other hand there exist no analytical solution to the orbit transfer
problem when considering the central inverse square gravity field.
Numerical procedures must be used that are classified between direct
and indirect methods [20,21]. Direct methods [22–29] discretize the
optimal control problem in order to rewrite it as a nonlinear large scale
optimization problem. Numerous efficient software packages such as
IPOPT, BOCOP, GESOP, SNOPT, WORHP …, are available making the
method suitable to a wide range of applications, particularly for low-
thrust transfer optimization [24,28]. These methods are nevertheless
computationally demanding and they may be not very accurate. On the
other hand indirect methods are based on the Pontryagin Maximum
Principle (PMP) [30,31] which reduces the problem to a system of
nonlinear equations. Applying the PMP to the minimum-fuel problem
yields in the regular case the optimal thrust direction aligned with the
velocity costate, whereas the thrust level (if optimized) is driven by the
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sign of a switching function. Such switches induce additional issues :
their number is a priori unknown and they must be detected accurately
within the simulation process in order to keep a good differentiability
of the problem [32]. Furthermore there may exist singular arcs which
require further theoretical analysis and specific solution methods
[33,34]. When properly initialized shooting methods are very fast
and produce high accuracy solutions. The main issue lies in their
sensitivity to the initial costate guess. Even for the minimum time
problem [35,36] when only the thrust direction is optimized (regular
case, prescribed thrust level), finding the unknown initial costate
proves numerically challenging, and it may discourage from using an
indirect method.

Various approaches can be envisioned to build a satisfying initial
costate guess and benefit from the efficiency of the indirect method. In
[37] the impulse transfer solution is used to provide a good initial guess
to the shooting algorithm. This method is based on the fact that a
continuous high-thrust orbit transfer shares similarities with the
impulse transfer as outlined in [5,38]. Multiple shooting reduces the
overall sensitivity by splitting the trajectory in several arcs at the
expense of additional unknowns and boundary conditions. In [39] a
multiple shooting method parameterized by the number of thrust arcs
is used to solve an Earth-Mars transfer. Homotopic approaches [40]
solve a series of optimization problems by continuous transformation
starting from a known solution. In [35,41,42] a differential continua-
tion method linking the minimization of the L2-norm of the control to
the minimization of the consumption is used to solve the low-thrust
orbit transfer around the Earth. In [43] simplified formulas are
established by interpolating many numerical experiments, which
allows a successful initialization for the minimal time orbit transfer
problem, in a given range of nearly circular initial and final orbits.
Based on that initial guess and on averaging techniques, the authors of
[44] implement in the software T3D continuation and smoothing
processes in order to solve minimal time or minimal fuel consumption
orbit transfer problems. Particle swarm [45] or genetic algorithms [46]
can also be used to explore largely the variables space and produce a
satisfying initial solution. We can also mention mixed methods that use
a discretization of the PMP necessary conditions and then apply a
large-scale equation solver [47] and dynamic programming methods
that search for the global optimum in a discretized state space by
solving the Hamilton-Jacobi-Bellman equation [48].

This paper addresses the minimum-fuel orbital transfer in the
particular case of an engine constantly thrusting at the same thrust
level. Although this assumption may seem restrictive, this case is of
great practical importance since rocket engines are generally designed
for a reference thrust level. The targeted application is the flight of a
high thrust launcher upper stage. The initial conditions are prescribed
resulting from the previous stage flight. The final conditions are defined
in terms of orbital parameters.

When the engine constant thrust level is considered as a free
optimization parameter (as is the case in preliminary design studies) an
additional optimality condition has to be written with the PMP
equations. This condition can be exploited in the planar case to derive
a closed-loop solution for the thrust optimal direction. Guessing and
propagating the costates is no longer necessary and the minimum-fuel
trajectory problem is reduced to a nonlinear system of 2 equations
(targeted apogee and perigee) with 2 unknowns (thrust level and final
time). This problem is easily solved from a rough initial solution.

On the other hand the initial costates corresponding to the optimal
trajectory are derived analytically from the initial conditions. These
costates can be used as initial guess for instances of the same
minimum-fuel problem when the thrust level is no longer a free
parameter.

The text is organized as follows. In Section §2 the optimal control
problem is formulated and the extremal conditions are analyzed. A
closed-loop control law is derived in the planar case and the solution
method is presented. In Section §3 the method is applied to a

representative example of a launcher targeting a geostationary transfer
orbit. A sensitivity analysis on the thrust level illustrates how the
analytical costates can be used as starting point to solve the minimum-
fuel problem at non-optimal thrust level. The extension to low-thrust
transfers is also discussed.

2. Problem formulation and analysis

This section formulates the Optimal Control Problem (OCP) under
consideration. The problem is analyzed by applying the Pontryaguin
Maximum Principle (PMP) and a closed-loop control is derived from
the first order necessary conditions in the planar case.

2.1. Optimal control problem

The problem consists in finding the minimal-fuel trajectory to go
from given injection conditions to a targeted orbit with a constantly
thrusting engine. The Earth is modeled as a sphere, with its center at
the origin of an inertial frame. The vehicle is considered as a material
weighting point with position tr→( ), velocity tv→( ), mass m(t) submitted
to the Earth acceleration gravity denoted g→( r→)and to the engine thrust.
The thrust level T is constant with a burned propellant exhaust velocity
equal to ve. The engine is ignited at the initial date t0 and it cannot be
turned off before the orbit insertion at tf. The thrust direction can be
chosen freely and it is orientated along the unit vector tu→( ).

Applying the fundamental dynamics principle in the Earth-centered
inertial frame yields the motion equations.
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The dependencies on time (for r→,v→, m, u→) and on position (for g→)
have been omitted for conciseness. A planar transfer is considered and
all vectors are of dimension 2.

In order to formulate an optimal control problem, we consider as
state variables tr→( ), tv→( ) and m(t). The control variables are the thrust
direction tu→( ), the thrust level T and the final time tf. The thrust level T
can take any finite positive value between a lower bound Tmin and an
upper bound Tmax. We assume that these bounds are sufficiently large
and that they are not active on the optimal solution.

The initial state at the engine ignition results from the ascent
trajectory flown by the launcher lower stages. This initial state is
completely prescribed. The final state is constrained by the targeted
orbit defined by the apogee and perigee altitudes denoted respectively
hA and hP. The apogee and perigee altitudes actually achieved at the
final date are denoted respectively ψA and ψP and they depend on the
final position tr→( )f and velocity tv→( )f

The optimal control problem is formulated under the Mayer form
with a final cost.
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