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A B S T R A C T

Advanced navigation systems for pinpoint landing are required in the entry, descent and landing phase of future
missions to Mars. To overcome the horizontal position estimation problem in the Mars powered descent phase,
the inertial measurement unit, Doppler radar and surface beacon integrated navigation scheme is proposed, and
a conventional filter such as an extended or unscented Kalman filter is adopted. However, in engineering
practice, these conventional filters for nonlinear systems with unknown dynamic inputs may degrade or even
diverge. The lack of navigation accuracy may result in a large growth of spurious navigations. To solve this
problem, based on the rank filter, a self-calibration rank filter is proposed for state estimation of a nonlinear
system to mitigate the effects of unknown dynamic inputs. Monte Carlo simulation results are presented to
demonstrate the good performance of the self-calibration rank filter for the Mars powered descent navigation.
The self-calibration rank filter not only prevents the divergence of the filtering but also significantly improves
the state estimation accuracy.

Introduction

Mars exploration has been a hot research area. To date, many Mars
landers from NASA have successfully landed on Mars, such as Mars
Pathfinder (MPF), Opportunity, Phoenix and Mars Science Laboratory
(MSL) missions. The general Mars entry, descent and landing (EDL)
phase can be divided into four phases: the hypersonic entry phase, the
subsonic parachute entry phase, the powered descent phase and the
touchdown phase [3]. Future Mars pinpoint landing missions, such as
Mars sample return, manned Mars landing and Mars base, may target
scientifically interesting features. Furthermore, most preselected target
sites for the key scientific goals are located at high elevations on the
surface of Mars [3]. If the features are in areas surrounded by hazards,
the lander must be precisely delivered from the Mars entry point to the
preselected target site within 100 m through the general Mars EDL
phase [20,30,31]. Thus, as the last and most vital phase of pinpoint
landing, the application of the guidance and control systems in the
powered descent phase should be realized. To realize pinpoint landing,
the navigation performance should be improved so that the complete
and accurate states of the vehicle can be offered to the guidance and
control systems [27]. Therefore, performance improvement of naviga-
tion during the powered descent phase is the focus of this paper.

To improve navigation accuracy, not only accurate dynamic and
measurement models but also an appropriate navigation filter algo-
rithm is required. There have been many reports about new Mars
powered descent navigation concepts and algorithms in the last decade.
A NASA Mars technology program task is developing a prototype of an
embedded, real-time navigation system for Mars final approach and
EDL using the Mars Network’s Electra ultrahigh-frequency (UHF)
transceiver [4,5,23]. Mars powered descent navigation using radio-
metric data has also been proposed by Qin et al. [27]. Moreover, the
Miniature Coherent Altimeter and Velocimeter (MACV), which pro-
vides altitude and velocity information, has been adopted to correct the
inertial bias and drift and improve the performance of integrated
navigation by Li et al. [22]. However, according to the research
conclusions of Qin et al. [27] and Xiao et al. [32], no previously used
navigation sensor or scheme can measure vehicle horizontal distance to
the preselected landing target during the powered descent phase, which
leads to large estimation errors in the horizontal position. In addition,
all past research adopted the conventional Mars dynamic model, which
is constructed by using the acceleration and angular velocity informa-
tion from the IMU to free the dynamic model of the uncertain effects.
However, in fact, they all omit the unknown inputs from Coriolis
acceleration caused by the Mars rotation [27] and other unknown
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inputs from gravitational acceleration and wind influence [32–34].
What is worse, using IMU information will introduce the IMU
unknown bias. Though gravitational acceleration unknown input has
been considered by Xiao et al. [32], the unknown input model was
assumed to be available. Unfortunately, this assumption is difficult to
realize in engineering, especially in Mars exploration missions. Hence,
the unknown dynamic inputs inevitably degrade the navigation accu-
racy. As a result, an appropriate navigation filter algorithm must be
designed for unknown dynamic inputs during the powered descent
phase.

Regarding the nonlinear system model in the powered descent
phase, the extended Kalman filter (EKF) has been widely used in many
areas during the last decades [9,21,23,24]. However, the EKF may
become degraded or even diverge when the system model has para-
meter uncertainties or unknown inputs [16,18,25,28]. The unscented
Kalman filter (UKF), which has been shown to be more accurate than
the EKF, also suffers from this problem [29]. Recently, the rank filter
(RF) has been proposed, which is better than the UKF [8]. However, it
is also sensitive to model parameter uncertainties or unknown inputs.

Therefore, unknown input filters for stochastic discrete-time linear
systems have gained the interest of many researchers during the last
decades. Because the model of the unknown dynamic inputs is
unavailable during the Mars powered descent phase, the conventional
augmented state Kalman filter (ASKF) [15], two-stage Kalman filter
(TSKF) [7], adaptive two-stage Kalman filter (ATKF) [17], optimal
three-stage Kalman filter (OThSKF) and robust three-stage Kalman
filter (RThSKF) [1] are not applicable, which are used only under the
condition that the model or prior information of the unknown inputs is
available. When the condition is unavailable, the unbiased minimum
variance (UMV) estimation theory is insensitive to the unknown inputs.
Thus, Kitanidis has formulated a UMV estimation method with
unknown inputs by minimizing the trace of the state error covariance
matrix under an algebraic constraint [19]. Darouach and Zasadzinski
then used a parameterizing technique to derive another UMV estima-
tor, which is an extension of the Kitanidis method [6]; however, this
method must choose a matrix in the recursive process. Moreover,
Darouach’s filter is equivalent to Kitanidis’s filter when a specific
matrix is chosen [6]. A robust two-stage Kalman filter (RTSKF)
equivalent to Kitanidis’s filter has also been proposed by Hsieh [13].
Afterwards, Hsieh [11] developed an extended recursive three-step
filter (ERTSF) to solve the addressed general unknown input filtering
problem. Recently, on the assumption of no prior knowledge about the
dynamical evolution of the fault and the unknown disturbances, Ben
Hmida et al. [2] presented a new recursive filter for joint unbiased fault
and state estimation for linear systems with unknown disturbances.

However, all methods mentioned above are suitable only for linear
systems. Thus, a nonlinear version of the ERTSF, denoted as NERTSF,
is proposed for a nonlinear traffic state estimation problem [14]. In this
paper, the main work is to design an appropriate navigation filter
algorithm for improved navigation performance with unknown dy-
namic inputs. Based on that, all linear methods mentioned above
degrade into the RTSKF, which is equivalent to Kitanidis’s filter.
Furthermore, the NERTSF also degrades into an EKF-like nonlinear
version of the RTSKF, named the robust two-stage extended Kalman
filter (RTSEKF) in this paper, which inevitably has drawbacks includ-
ing truncation errors caused by Taylor expansions and complexity
Jacobi matrix calculation [10,14]. Therefore, based on the RF and
RTSKF, a self-calibration rank filter (SCRF) is proposed for state
estimation of nonlinear unknown systems to mitigate the effects of
unknown dynamic inputs. Furthermore, integrated Doppler radar with
six beams and a radio beacon is adopted as the navigation sensor to
improve the horizontal position estimation accuracy [27].

The reminder of this paper is organized as follows. In Section 2, the
problem of the nonlinear uncertain discrete-time stochastic system
with unknown dynamic inputs is introduced. In Section 3, the RF is
introduced, and then the SCRF is designed based on the RF. Section 4

mainly describes the Doppler radar and Mars beacon integrated
navigation scheme with unknown dynamic inputs during the powered
descent phase. In Section 5, adopting the integrated navigation
scheme, the SCRF compared with the RTSEKF is used to address the
unknown dynamic inputs in the simulations. Conclusions are given in
the last section.

2. Problem statement

In the most engineering cases, the nonlinear uncertain discrete-
time stochastic system with unknown inputs can be represented by

fx x B b w= ( ) + +k k k k k−1 −1 −1 −1 (1)

hz x v= ( ) +k k k (2)

where xk is the n × 1 state vector, zk is the m × 1 measurement vector,
and bk−1 is the p × 1 unknown inputs vector. Matrix Bk−1 has the
appropriate dimensions. wk and vk are zero mean uncorrelated
Gaussian random sequences with
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where Q ≥ 0k , R > 0k and δkj is the Kronecker delta, δ = 1kj if k j= , or
δ = 0kj .

The initial state x0 is assumed to be uncorrelated with the white
noise processeswkandvk , and it satisfies

E x x[ ] = ˆ0 0

E x x x x P[( − ˆ )( − ˆ ) ] =T
0 0 0 0 0

When the unknown inputs model and the prior information of the
unknown inputs are both unavailable in the nonlinear system, conven-
tional methods, such as the two-stage extended Kalman filter (TEKF)
[12] and adaptive two-stage extended Kalman filter (ATSEKF) [18],
will lose their applicability. Still, the RTSEKF, UMV estimator and
other methods are proposed. These methods have the same problems
as the EKF. Thus, it is necessary to design a filter algorithm that
overcomes these problems. Therefore, a SCRF based on the RF and
RTSKF is formulated for a strong nonlinear system with unknown
dynamic inputs.

3. Self-calibration rank filter

The algorithms mentioned above are mostly proposed to work with
linear systems with unknown inputs. Regarding the nonlinear system
with unknown inputs, using EKF technology, which is a linearized
transformation technology, the relevant extended algorithms are
obtained. However, the linearized transformation is reliable only when
the error propagation can be well approximated by a linear function. If
this condition is not met, this technology will undermine the perfor-
mance of the filter or cause its estimation to diverge altogether. In
addition, Jacobi matrix calculation is essential to the linearization,
although the Jacobi matrix may not exist in some systems. Even if the
Jacobi matrix exists, calculating it can be a very difficult and error-
prone process, especially in the Mars powered descent system with
high dimensions. To solve these problems, the RF, whose performance
is better than that of the UKF, is adopted. Combining the RF and
RTSKF, the SCRF is then formulated. The RF and RTSKF are reviewed
in Sections 3.1 and 3.2, respectively. The structure of the SCRF
algorithm is designed in Section 3.3.

3.1. Rank filter algorithm

For the following nonlinear discrete-time system,

fx x w= ( ) +k k k−1 −1 (4)
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