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A B S T R A C T

This paper presents an optimal trajectory planning scheme for robotic capturing of a tumbling object. Motion
planning of a space robot is much more complex than that of a fixed-based robot, due to the dynamic coupling
between the manipulator and its base. In this work, the Path Independent Workspace (PIW), in which no
dynamic singularity occurs, and Path Dependent Workspace (PDW) of the space robot are first calculated by the
proposed algorithm. The motion equations of the tumbling object are formulated based on the Euler dynamics
equations and the quaternion, which are used to predict the long-term motion of a grasping point on the
tumbling object. Subsequently, the obtained PIW workspace and predicted motion trajectories are used to plan
the trajectory of the end-effector to intercept the grasping point with zero relative velocity (to avoid impact) in
an optimal way. In order to avoid dynamic singularity occurring at the capture moment, the optimal capture
occasion is first determined by three proposed criterions guaranteeing the capture can be safely, reliably and
rapidly performed, then the optimal trajectory of the end-effector is generated minimizing a cost function which
acts as a constraint on acceleration magnitude. Simulations are presented to demonstrate the trajectory
planning scheme for a space robot with a 3-degree of freedom (DOF) manipulator grasping a tumbling satellite,
the results show that the manipulator end-effector can smoothly intercept the grasping point on the tumbling
satellite with zero relative velocity.

1. Introduction

Since mid-1990s, space robots have made a great progress [1].
Missions like “Robot Technology Experiment (ROTEX)” [2],
“Engineering Test Satellite VII (ETS-VII)” [3] and “Orbital Express
(OE)” [4], etc. have been performed to demonstrate the key servicing
technologies of space robots. However, all targets in these missions
were cooperative with Attitude Control System (ACS). Ground observa-
tions [5] show that many defunct satellites have indeed tumbling
motion, which is caused by the migration of the angular momentum
from the gyros and wheels of the satellite to its body as soon as failure
occurs and the long-term effects produced by the environmental
perturbations. The tumbling motion makes the robotic capturing a
very challenging task, in fact, robotic capturing of a tumbling satellite
has yet to be attempted.

The typical process of a space robot grasping a target can be roughly
divided into two phases: 1) pregrasping phase and 2) postgrasping
phase. In the pregrasping phase, the manipulator moves from its home
position to intercept a grasping point on the target at a rendezvous

point with zero relative velocity. In the postgrasping phase, the
manipulator has to bring the target to rest in such a way that the joint
position and torque remain within a safe range [6]. This paper focuses
on a manipulator trajectory planning scheme for pregrasping phase.

Y. Umetani and K. Yoshida [7] derived the Generalized Jacobian
Matrix (GJM) of space robots, which bridged the end-effector velocity
and the joint angular velocity. With the relationship between these two
kinds of velocity which are in different spaces, the trajectory of the
manipulator for capturing a tumbling target can be designed in two
different ways: 1) the joint angular trajectories are parameterized and
all capture requirements are expressed as constraints in the joint space,
then a nonlinear optimization problem is solved to directly obtain the
desired joint trajectories, or 2) the end-effector trajectory in the task
space is first planned, then the corresponding joint velocities are
calculated by solving the inverse kinematics problem. Many methods
have been studied to acquire optimal joint trajectories in the joint
space. M. Wang et al. [8] parameterized joint trajectories with Bézier
curves, then the parametric optimization problem was solved using
Particle Swarm Optimization (PSO) method. R. Lampariello et al. [9]
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studied the real-time trajectory planning for a robot to optimally catch
flying target, in which the desired joint trajectories were encoded with
B-splines or trapezoidal functions and the Sequential Quadratic
Programming (SQP) method was employed to search the optimal
solution. W. Xu et al. [10] parameterized the joint trajectories with
polynomial or sinusoidal functions first. Then, the parameters were
solved by an iterative Newtonian method. In all these methods, since
the direct kinematics equations were used, dynamic singularities which
may occur when solving inverse kinematics problem can be avoided.
However, as pointed out in the paper [9], the drawback of optimizing
parametric joint trajectories is that the convergence time may be long
because of the required numerical iterations. Meanwhile, in the
problem of a space robot capturing a tumbling target, the requirement
of zero relative velocity between the end-effector and the grasping point
at rendezvous moment is easily formulated in task space rather than in
joint space. Some researchers focused on generating desired end-
effector trajectory in task space, then the inverse kinematics equations
were solved to obtain the required joint angular trajectories [11,12]. F.
Aghili [12] obtained an optimal end-effector trajectory by analytically
solving an optimal control problem, which can achieve zero relative
velocity requirement at capturing moment. In order to obtain joint
trajectories, the inverse kinematics problem had to be solved. E.
Papadopoulos [13] pointed out dynamic singularities could happen
when solving the problem. In this case, too large angular velocities
would be needed to make the end-effector follow the desired trajectory.
The author defined the Path Dependent Workspace (PDW) to contain
all workspace locations that may induce a dynamic singularity. Subtract
the PDW from the reachable workspace, the Path Independent
Workspace (PIW) was obtained. All the points in the PIW were
guaranteed not to have dynamic singularities. F. Aghili recommended
to use a singularity robust scheme for inverse kinematic solution after
acquiring the optimal end-effector trajectory in the task space.
However, to the best of authors' knowledge, although many singular-
ity-robust schemes have been studied [14–16], the resulting angular
trajectory will cause the end-effector to deviate from desired trajectory.
The deviations occur at some moments during the approaching process
are allowable because they may be compensated later with proper
methods, but not include the capture moment, since the capture is
going to happen and the deviation could cause collision and lead to
large impact force.

In this paper, we first determine the optimal capture occasion with
the help of the PIW concept, then the optimal capture trajectory of the
end-effector is planned by using the optimal control theory. The main
advantages of the proposed scheme are that the capture can be
performed without any possibility encountering dynamic singularity
at the capture moment and an optimal capture trajectory can be
obtained. The rest of the paper is organized as follows: In Section 2, the
kinematics and dynamics equations of free-floating space robots are
established, and an algorithm is proposed to analyze the space robot's
workspaces; Section 3 derives the motion equations of a tumbling
target, the motion trajectory of a grasping point on the target is
illustrated and the key factors affecting the trajectory are analyzed. In
Section 4, we propose three criterions to determine when and where is
the best occasion to capture the target, then the optimal motion
trajectory of the end-effector is generated using the optimal control
theory. In Section 5, a case study of a space robot capturing a tumbling
target is presented to demonstrate the correctness of the proposed
scheme. Finally, the conclusive remarks are made at the end of the
paper, in Section 6.

2. Modeling and workspace analysis of space robots

2.1. Motion equations of space robots

A space robot consists of a satellite base and an n degree of freedom
(DOF) manipulator as shown in Fig. 1, whose kinematics and dynamics

equations can be expressed as follows: [7].
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where v ω,e e are the linear and angular velocity of the end-effector (the
hand of the manipulator), respectively. x v ω˙ = [ ]b b b

T is the linear,
angular velocity of the base body, θ̇ is the joint velocities vector of
the manipulator. Other symbols' physical meanings are listed in
Table 1. If not special specified, all vectors are expressed in the inertial
frame.

To conserve fuel or avoid vibration of the end-effector caused by
discontinuous base forces, all base satellite actuators may be turned off
when the manipulator is tracking the servicing target [17]. In this case,
the space robot is in the free-floating mode with external forces
f f 0, =b e , whose dynamics equation can be simplified as Eq. (3) from
Eq. (2):

τ H θ c θ θ= ¨ + ( , ˙)θ (3)

where H H H H H= −θ m bm
T

b bm
−1 is defined as “inertia tensor for free-

floating space robots”. c θ θ c H H c( , ˙) = −m bm
T

b b
−1 is the nonlinear term

about coriolis and centrifugal forces of free-floating space robots. Free-
floating space robots can also have a more concise kinematics equation
since they obey momentum conservation laws:
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where P and L express linear and angular momentum, respectively. r0
is the position of the satellite base. Suppose the initial momentum of
the free-floating space robot is 0, substitute Eq. (4) into Eq. (1) and
eliminate vb and ωb gives the following kinematics equation:
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Fig. 1. Schematic of a space robot system.

Table 1
Symbols of the space robot.

Symbols Physical meanings

Ji,Ci joint i, mass center of link i
a b,i i position vectors from Ji to Ci and from Ci to Ji+1, m

m M,i mass of the ith link and the whole system

H H,b m inertia matrix of base and manipulator

Hbm coupling inertia matrix between base and manipulator

cb, cm vectors of velocity dependent nonlinear terms

f f,b e vectors of force and torque exerted on base and end-effector

τ torque exerted on manipulator joints, N·m
J J,b m Jacobian matrix of base and end-effector
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