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A B S T R A C T

Satellite orbits require periodical maintenance due to the presence of perturbations. However, random errors
caused by inaccurate orbit determination and thrust implementation may lead to failure of the orbit control
strategy. Therefore, it is necessary to analyze the robustness of the orbit control methods. Feasible strategies
which are tolerant to errors of a certain magnitude can be developed to perform reliable orbit control for the
satellite. In this paper, first, the orbital dynamic model is formulated by Gauss’ form of the planetary equation
using the mean orbit elements; the atmospheric drag and the Earth's non-spherical perturbations are taken into
consideration in this model. Second, an impulsive control strategy employing the differential correction
algorithm is developed to maintain the satellite trajectory parameters in given ranges. Finally, the robustness of
the impulsive control method is analyzed through Monte Carlo simulations while taking orbit determination
error and thrust error into account.

1. Introduction

The trajectories of satellites deviate from their nominal orbits due
to orbital perturbations, such as asymmetry of the gravitational field
and atmospheric drag. Therefore, station-keeping is crucial to ensure
that a spacecraft can operate in the vicinity of its nominal orbit. In the
control system, however, inevitable random errors caused by the orbit
determination process and the thrust implementation device may lead
to failure of the entire spacecraft mission. Hence, it is necessary to
design a station-keeping strategy that is tolerant to a certain magnitude
of errors. Many studies have addressed this issue during the past few
decades. A number of orbit control methods have been developed using
impulsive maneuvers or continuous maneuvers to control the space-
craft formation flight [1–10]. Various types of errors have been
considered in control algorithms to test their applicability in outer
space. Howell and Barden [11] applied a station-keeping strategy to
multiple spacecraft in formation near a libration point and Monte Carlo
simulations were conducted with various errors. Tragesser and
Skrehart [12] took account of the short period fluctuations of the orbit
elements, caused by the oblateness perturbations, in the guidance
scheme for low earth orbit (LEO) satellite and Monte Carlo simulations
incorporating the navigational error and the control error were
performed to access the performance of the guidance approach. Lian

et al. [13] addressed a discrete-time sliding mode control for the
station-keeping of real Earth-Moon libration point orbits and Monte
Carlo results verified that the proposed approach was applicable in
keeping the satellite within a close range of the nominal orbits. Bruijin
and Gill [14] studied the impact of sensor and actuator error on
formation control accuracy and propellant consumption with two
impulsive control methods. Rozanov and Guelman [15] developed a
variable structure closed-loop control to manage the effects of un-
predictable atmosphere density for aerocapture, and Monte Carlo
simulations were performed to test the robustness of the algorithm.
Qi et al. [16] developed an impulsive control method based on two-
level differential corrections to maintain the flight formation in the
circular restricted three-body problem and to fully exploit the pre-
determined error bound. Thus, the robustness analysis is necessary to
offer proposals to the design of orbit control law and to ensure the
execution of space missions.

The primary goal of this work is to develop a method for evaluating
the robustness of orbit control methods. An ocean satellite of China
called HY-2, which is mainly used for the observation and research of
the ocean environment, is taken as the chief object of this study. To
meet the mission requirements, HY-2 operates in a near-circular sun-
synchronous orbit. In Section 2, its equations of motion are described
employing Gauss’ form of the planetary equations, and the perturba-
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tions exerted on the satellite are considered. Note that the mean orbit
elements are employed in this research in preparation for the orbit
analysis. This section also presents the differential correction algorithm
that is utilized to achieve a precise orbit maneuver. Section 3
demonstrates the designed impulsive station-keeping strategy, and its
performance is verified through orbit simulation. In Section 4, random
error models of position, velocity and thrust are introduced. Monte
Carlo simulations with these random errors are conducted to analyze
the robustness of the station-keeping strategy. Finally, Section 5
concludes the work.

2. Orbit dynamic model

The equations of motion of the spacecraft are formulated using the
mean orbit elements along with external perturbation forces such as
the atmospheric drag and the Earth's non-spherical perturbations.

2.1. Gauss’ form of the planetary equations and perturbation forces

The real orbit of spacecraft, varying in time in outer space, can be
considered to be a sequence of osculating Keplerian orbits arranged in
chronological order. This notion forms the foundation of the method of
variation of orbit elements, which yields a set of first-order differential
equations of the variation of the osculating Keplerian orbit elements
with time [17]. The set of Gauss’ form of the planetary equations,
applicable to non-conservative forces, is just one of the results from
this idea. The set consists of six first-order differential equations
describing the variations of the six orbit elements and is shown in
Eq. (1).
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The semimajor axis, eccentricity, and inclination are denoted by a, e,
and i, respectively. The right ascension of the ascending node is Ω, and
the argument of perigee is ω. The true anomaly of the satellite is
denoted by θ . The distance between the Earth and the satellite is r . The
components of the perturbation force in the orbital frame are denoted
by fr , fu, and fh, in which fr is along the orbit position vector, fu is
perpendicular to fr in the orbital plane, pointing in the direction of
motion, and fh is orthogonal to these vectors using the right-hand rule.
The semilatus rectum is denoted by p, the magnitude of the angular
momentum is h, and the gravitational constant is μ.

The perturbation force in Eq. (1) includes the atmospheric drag and
the Earth's non-spherical perturbations because the HY-2 satellite
operates in LEO; forces exerted by the Earth and the atmosphere
around the Earth are the dominate influences on the satellite orbit.
According to aeronautics, atmospheric drag exerted on the satellite can
be described through Eq. (2)

D C ρv S= 1
2D a
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(2)

where CD denotes the drag coefficient, and ρ is the atmospheric density
obtained from the U.S. Standard Atmosphere 1976 model (SA76) [18].
In this paper, ρ is considered to be a constant because the variation of
atmosphere density is negligible when the satellite is in the vicinity of
the nominal orbit. va is the velocity of the satellite relative to the Earth.
The cross-sectional area of the satellite is denoted by S. To simplify Eq.

(2), we assume that the atmosphere is spherically symmetric and static
and that the windward area of the spacecraft does not change. Thus,
the atmospheric drag produces only the tangential acceleration of the
satellite in the velocity frame as is shown in Eq. (3) where fn, ft, and fh
are the components of the atmospheric drag in the velocity frame in
which ft points in the velocity direction, fh is normal to the orbital
plane, positive in the direction of the angular momentum vector, and fn
is orthogonal to these two vectors using the right-hand rule. v is the
satellite velocity in the tangential direction of the orbit.
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The perturbation force in Eq. (1) is described in the orbital frame,
whereas the atmospheric drag in Eq. (3) is in the velocity frame.
Therefore, a coordinate system transformation is required based on the
normal direction of the orbital plane with a rotation angle γ when
substituting the atmospheric drag into Eq. (1). The expression of γ is
shown in Eq. (4).

The gravitational potential is a complex high order polynomial
function in which the sectorial harmonics can be largely offset over
many periods; we may therefore neglect the effect of these harmonics
for many applications. Additionally, the gravitational potential is
always truncated, retaining only the terms that contribute significantly
to the orbit. Thus, only the accelerations produced by J2, J3, and J4-term
from the gravitational potential are included in this research, and the
expression is presented in Eq. (5).
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In Eq. (5), Pn and P′n are the Legendre function of the first kind of
degree n and their derivatives. x,y, and z are the coordinates of the
spacecraft in the inertial frame. r and φ are defined by
r x y z= + +2 2 2 and φ z rsin = / , respectively. The radius of the
Earth is denoted by RE . A coordinate system conversion is also required
when substituting Eq. (5) into Eq. (1); the method is similar to the
coordinate transfer of the atmospheric drag in Eq. (3) and therefore not
shown.

In this study, the mean orbit elements are employed to explicitly
depict the long-term variations of the orbit elements. The conversion
from osculating orbit elements to mean orbit elements is omitted as it
can be easily obtained from Ref. [19].

2.2. Differential correction algorithm

Suppose a satellite is initially at a point in space with a state vector
x0. After a maneuver VΔ , it arrives at point xt at t t Δt= +0 . The state of
the spacecraft at the desired point is denoted by xd . Therefore, the
elimination of the difference between xt and xd requires a suitable VΔ
obtained from numerical methods. The satellite would then arrive in
the vicinity of the desired place within a preset precision [20]. In this
paper, the differential correction algorithm (DCA) with the advantage
of fast convergence is utilized to find the appropriate VΔ .

For HY-2, of the six orbit elements, a, e, and ω require correction
during the rotation around the Earth. The reason that only these three
elements need to be controlled will be explained in Section 3. Thus in
this paper, the free variable vector X is
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