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A B S T R A C T

This study proposes a multiphase convex programming approach for rapid reentry trajectory generation that
satisfies path, waypoint and no-fly zone (NFZ) constraints on Common Aerial Vehicles (CAVs). Because the time
when the vehicle reaches the waypoint is unknown, the trajectory of the vehicle is divided into several phases
according to the prescribed waypoints, rendering a multiphase optimization problem with free final time. Due to
the requirement of rapidity, the minimum flight time of each phase index is preferred over other indices in this
research. The sequential linearization is used to approximate the nonlinear dynamics of the vehicle as well as
the nonlinear concave path constraints on the heat rate, dynamic pressure, and normal load; meanwhile, the
convexification techniques are proposed to relax the concave constraints on control variables. Next, the original
multiphase optimization problem is reformulated as a standard second-order convex programming problem.
Theoretical analysis is conducted to show that the original problem and the converted problem have the same
solution. Numerical results are presented to demonstrate that the proposed approach is efficient and effective.

1. Introduction

Rapid trajectory optimization is still an open challenging field
among many engineering fields including aerospace engineering. A
typical problem is to efficiently plan a feasible trajectory for a
hypersonic vehicle, which is constrained by heat rating, dynamic
pressure, normal load, and other constraints related to the mission.
To address such a highly constrained nonlinear dynamical optimization
problem, a number of methods have been proposed. Generally, these
methods can be classified into two categories: direct and indirect
methods [1]. The indirect method, mainly based on Pontryagin's
maximum principle, results in a Hamiltonian Boundary Value
Problem (HBVP) via definition of the costate variables in addition to
the state variables [2,3]. The direct methods usually convert the
original infinite-dimensional dynamical optimization problem to a
finite-dimensional nonlinear programming problem (NLP) through
parameterization techniques, such as the widely used pseudospectral
methods [4–7]. Next, the resulting NLP can be solved by sequential
quadratic programming (SQP) [8]. Some software packages have been
developed based on direct methods,such as GPOPS [6], GPOCS [9],
etc.. However, these nonlinear programming methods cannot provide a
priori guarantees on the convergent rate, furthermore, they cannot

necessarily guarantee that the global optimal solution is obtained [10].
Because of the polynomial-time complexity and the unique theore-

tical advantages, convex optimization has been wildly used in the
optimal control or programming for decades. Recently, this technique
has been successfully implemented in aerospace guidance and trajec-
tory planning, including planetary powered soft landing [11,12,10],
rendezvous and proximity operations [13], control of swarms of
spacecrafts [14], and entry trajectory optimization [15,16]. These
outstanding innovative works demonstrate the great advantages of
convex optimization over than other NLP solving methods: (1) rapid
convergent rate; (2) insensitivity to the initial guess. Note that most
aerospace engineering problems are non-convex in nature; hence, the
works aforementioned mainly focus on the relaxation of the concave
constraints and thus an equivalently relaxed convex optimization
problem, or an approximately equivalent second-order conic problem
(SOCP); as a result, the efficient primal-dual interior-point methods
[17,18] will be used to obtain the optimal solution.

This work mainly reconsidered the CAV reentry trajectory optimi-
zation problem [19] with waypoint and NFZ constraints by using the
recently emerged convex programming method. For the entry trajec-
tory optimization under convex optimization framework, the authors of
[15,16] have produced great innovative works: given the profile of the
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angle of attack, the corresponding SOCP is setup by using successive
approximation and convexification techniques, and then the optimal
trajectory is obtained by a commercial SOCP solver MOSEK [18].
During this procedure, the non-convex path constraints, including heat
flux, dynamic pressure and normal load, are numerically converted to
the inequality constraints regarding the vehicle altitude, and the non-
convex NFZ constraint indices are approximated by a series of linear
convex inequalities. The numerical results for trajectory optimization
of CAV and X-33 show that the sequential convex programming
method proposed in [15] is very efficient. Note that in these works, a
velocity-dependent angle-of-attack (AOA) profile is assumed to be a
priori specified. Such an assumption simplifies the problem because of
the reduction of the number of control variables; however, the AOA
profile should be obtained by other methods and is not necessarily
optimal.

In this paper, we develop a new convex programming method to
simultaneously optimize two control variables, namely the normalized
coefficient of lift and the bank angle, in the time domain on the basis of
the method proposed in [15], in which the motion of vehicle is defined
with respect to energy. In addition to the constraints on heat flux,
dynamic pressure and normal load mentioned in [15], the waypoint
constraints, which are often defined to execute the multiple mission
tasks, such as reconnaissance or multi-payloads deployment, are
considered in our work. Similar to [20,14,15], sequential linearization
is used in this work to address the nonlinear system dynamics. As
reference [15] highlighted, the sequential linearization of system
dynamics with respect to the control may cause significant undesired
chatter in the control profile and even great convergence difficulty. The
two control variables to be optimized in our work render more
challenges than that resulting from single control variable in [15]. To
cope with these challenges, equivalently alternative variables are
introduced and the appropriate relaxation techniques for the control
constraints are developed; moreover, the concave path constraints on
heat flux, dynamic pressure, load factor and NFZs are sequentially
approximated by linear inequality constraints. The major part of this
paper is devoted to analytically ensuring that the relaxed problem has
the same solution as the original problem. The concave constraints on
waypoints are converted to several boundary constraints in the
sequence of multiphase convex optimization problems, and the ob-
stacles that result from the unknown time instants that the vehicle
passes through the waypoints are avoided in our proposed multiphase
convex programming method. The numerical results and comparison
study are provided to validate the effectiveness and efficiency of the
proposed method.

The remainder of this paper is organized as follows: Section 2
formulates the CAV's entry trajectory optimization problem and the
various nonlinear constraints; Section 3 presents the main results for
the reformulation, convexification and numerical solution procedure of
this problem, and a rigorous theoretical analysis is presented to ensure
the activity of the relaxed constraints; the numerical results and
comparison study are shown in Section 4 to demonstrate the effective-
ness of the proposed method; and Section 5 concludes this paper.

2. Problem formulation

This section presents the entry dynamics as well as the specific
constraints used in this research, and then the continuous-time
dynamic optimization problem with free final time is formulated.

2.1. CAV entry motion description

Before modeling the motion of CAV, we made the following
assumptions [21]: (1) the earth is non-rotating; (2) constant gravita-
tional acceleration; (3) small flight path angle, which implies γ γsin ≈
and γcos ≈ 1; (4) limited control inputs (bank angle and angle of
attack); (5) simple exponential atmospheric density model. Further, a

Mach independent aerodynamic model taken from [22] is used in this
research.

According to [19], define the normalized coefficient of lift as
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where CL is the lift coefficient, and C*L is the lift coefficient that
produces the maximum lift-to-drag ratio. In light of the aforemen-
tioned assumptions and definitions, the non-dimensional equations of
CAV's motion are given as [19].
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where t*̇ = d*/d and t is normalized by R g/e e (Re is the earth's radius,
and ge is the gravitational acceleration at sea level), the states x and y
represent the horizontal positions normalized by the earth's radius Re,
h is the altitude normalized by Re, v is the vehicle speed normalized by

R ge e , γ is the flight path angle, and θ is the heading angle. The vehicle

specific constant B is defined by B ρ R S C m= */(2 )e ref L0 where ρ0 is the
atmospheric density at sea level, Sref is the aerodynamic reference area,
and m is the vehicle mass. In (2), the control variables are the bank
angle σ and the normalized coefficient of lift λ.

Let the states in (2) be x y h v γ θx = [ , , , , , ]T , and the controls be
λ σu = [ , ]T , then rewrite (2) as follows

tx f x u˙ = ( , , ) (3)

2.2. Flight constraints

In general, path constraints, such as the heating rate, dynamic
pressure, and load factor, guarantee the safe flight of a vehicle.
Moreover, in many cases, waypoint and no-fly zone constraints are
prescribed to execute multiple tasks and avoid international dispute.
The resulting waypoints specify a series of positions that the vehicle
must directly pass overhead to execute the prescribed multiple tasks,
such as validation of the vehicle navigation, strikes on different
locations, etc. The no-fly zone defined a region that the vehicle should
not enterto avoidan international dispute. All of these flight constraints
can be classified into two groups: equality and inequality constraints.

2.2.1. Equality constraints
The initial condition and the terminal constraints of CAV are

determined by the prescribed entry start and the target according to
the mission profile; therefore, the following equality constraints apply:

t tΦ x x 0 Ψ x x 0( ( ), ) = , ( ( ), ) =f f0 0 (4)

Note that in many cases, the initial and terminal states are partially
specified, for example, only the terminal horizontal position is pre-
scribed in the research of [19]. The terminal flight path angle γ t( )f and
heading angle θ t( )f may be prescribed in some cases, thereby imposing
additional equality constraints on the terminal state tx( )f . Furthermore,
these additional equality constraints can be replaced by inequality
constraints, while γ t( )f and θ t( )f are limited within a prescribed range.

Waypoint constraints are also defined by equality constraints.
Consider nW waypoints specified by x y i nwp = [ , ] , ( = 1, … )i i i

T
W in

which the horizontal positions that the vehicle must pass overhead
are defined. Thus, the solution of (3) on the certain time ti, which is
unknown in advance, is constrained by
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