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A B S T R A C T

Solar sails are enablers for long interplanetary transfers, but also offer many advantages in Libration Point
Orbits missions. The extra effect of the Solar Radiation Pressure allows a space vehicle, by changing the sail
orientation, to be artificially displaced from the classical Lagrangian equilibrium points, L L, …,1 5, as well
perturbed from the Lyapunov, Halo and Lissajous orbits that appear around them. Most of these equilibrium
points are linearly unstable and have stable and unstable invariant manifolds associated with them. In this
paper we explore the possibilities that these invariant manifolds offer to navigate in a natural way around a
circular, restricted, three-body system. We take the Earth-Sun Restricted Three Body Problem as a model and,
for different fixed sail orientations, we compute the stable and unstable manifolds associated with the
equilibrium points of the system. We find natural trajectories that allow the vehicle to move around the family
of equilibria in a controlled way and to go from a region close to L1 or L2 to a region close to L4.

1. Introduction

A solar sail is a spacecraft propulsion device that employs large
reflecting surfaces to exploit solar radiation pressure (SRP), enabling a
constant acceleration and potentially being able to thrust a spacecraft
indefinitely. This feature offers the opportunity to combine low-cost
operations with long-term missions.

The successful deployment of a solar sail on IKAROS (December
2010) by JAXA,1 NanoSail-D2 (January 2011) by NASA,2 and recently
LightSail (June 2015) by the Planetary Society3 have validated the
concept of solar sailing. All three missions where focused on demon-
strating the technology of solar sailing, up to the date there has not
been any scientific mission using solar sails. Nevertheless, many
studies on this novel propulsion system are being conducted. In
astrodynamics research, solar sails are being considered for different
mission scenarios. One example is the Sunjammer mission, an
enhanced warning mission to detect solar magnetic storms, where
the solar sail allows the vehicle to be displaced from the classical
Lagrangian equilibrium points [1]. Alternatively, drag sails are con-
sidered to accelerate the de-orbiting of LEO satellites [2], and sails
have been proposed as an end-of-life option in Libration Point Orbits
(LPO) [3]. Solar sail spacecraft have also been suggested for a low-cost
multi-NEO rendezvous mission; the mission could visit many asteroids
and be flexible in the selected destinations [4].

In this paper we explore the structure of invariant manifolds that

exist in the Restricted Three Body Problem (RTBP) and use it to derive
transfer orbits between different regions in the phase space. The stable
and unstable invariant manifolds in the RTBP have already been used
to provide inexpensive transfer orbits between the Earth and a Halo
orbit in the Genesis mission, and their potential using chemical
propulsion systems has been widely studied [5–12].

To model the dynamics of a solar sail in the Earth-Sun system we
consider the RTBP and incorporate the effect of the solar radiation
pressure due to the solar sail (RTBPS). In an idealised model, the
acceleration given by the solar sail depends on three parameters: the
sail lightness number (β) that measures the sail efficiency and two
angles α δ( , ) that measure the orientation of the sail. It is well known
that the extra effect of the solar sail in the RTBPS allows one to
“artificially” displace the Lagrangian equilibrium points (L1,…,5) result-
ing in a two-dimensional (2D) family of equilibrium points for a given β
[13,14,15,16].

These new equilibrium points offer privileged positions in the phase
space for observational missions and have been proposed for missions
such as Sunjammer [13,1] and Polar Sitter [17,18]. The Sunjammer
mission (also known as Geostorm) would place a sailcraft at an
equilibrium point closer to the Sun than the classical L1 and displaced
the vehicle about 5° from the Sun-Earth line, enabling observations of
the Sun's geomagnetic field while having a constant communication
with the Earth. This positioning would enable the sail observatory to
alert ground stations of Geo-magnetic storms, potentially doubling the
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actual alert time from ACE, which is orbiting on a Halo orbit around L1.
Alternatively, Halo orbits around the displaced L1 could also be
considered for such a mission [1]. On the other hand, the Polar
Sitter (or Polar Observer) mission proposes to use the solar sail to
find an equilibrium point above or below the ecliptic plane, high
enough to enable continuous monitoring of the Earth's Polar regions.
This could solve the poor temporal resolution of polar observations
from highly inclined LEO. Alternatively, constellations at vertical
Lyapunov orbits and other artificial displaced orbits by solar sails
and hybrid propulsion systems have also been proposed [18].

We have computed these families of equilibrium points for different
sail configurations (β = 0.01, 0.02, 0.03, 0.04 and 0.05) and classified
them with regard to their stability and other properties. Many of these
artificial points are unstable and have stable and unstable manifolds
associated with them. These invariant manifolds are used as natural
transfer trajectories from one place to another in the phase space. Most
of these equilibrium points possess families of periodic Lyapunov and
Halo orbits in their respective vicinities [19]. These orbits are also
unstable and their invariant manifolds can also be used to generate
transfer trajectories. However, in this paper we focus the study on the
options that the stable and unstable manifolds related to the equili-
brium points, and their families, provide. As we will see this design
space is very rich. This paper is only a preliminary study to show that
these transfer trajectories can be obtained using a solar sail.

We have organised this paper as follows: in Sections 2 and 3 we
define the dynamical model. In Section 4 we discuss the Jacobi
constant and its implications in our model. In Section 5 we describe
the families of equilibrium points when we change the sail orientation,
as well as their properties. In Section 6 we describe the invariant
manifolds connected to the artificial equilibrium points and focus on
three different mission applications. The first application (Section 6.1)
employs a linear approximation of these manifolds to generate a
surfing strategy to drift along the family of equilibria in a controlled
way. The second application (Section 6.2) is to study the feasibility of
transferring a solar sail from the L1 region to the L2 region. The final
application (Section 6.3) is to use the solar sail to gain enough energy
to transfer from L1 or L2 to a neighbourhood of L4. Finally, in Section 7
we show a brief study on the cost of a solar sail transfer to L4 from the
L1 and L2 vicinity.

2. Equations of motion

To describe the motion of a solar sail spacecraft in the Earth-Sun
system we consider as a model the Circular Restricted Three Body
Problem and incorporate Solar Radiation Pressure (SRP) acting on the
solar sail spacecraft. We assume that the Earth and the Sun are point
masses moving around their common barycentre circularly because of
their mutual gravitational attraction. The solar sail spacecraft is
assumed to be a massless particle that does not affect the motion of
the two primaries but is affected by their gravitational attraction as well
as by the SRP.

We normalise the units of mass, distance and time, so that the total
mass of the system is 1, the Earth-Sun distance is 1 and the period of
one Earth-Sun revolution is π2 . In these units the universal gravita-
tional constant G=1, the mass of the Earth is μ = 3.0034806 × 10−6, and

μ1 − corresponds to the mass of the Sun. We use a rotating reference
system with the origin at the centre of mass of the Earth-Sun system
such that the Earth and the Sun are fixed on the x-axis (with its positive
direction towards the Sun), the z-axis is perpendicular to the ecliptic
plane and the y-axis completes an orthogonal positive oriented
reference system [20].

With these assumptions, the equations of motion in the rotating
reference system are:
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where a a aa = ( , , )x y z is the acceleration given by the solar sail, and

r x μ y z r x μ y z= ( − ) + + , = ( − + 1) + +ps pe
2 2 2 2 2 2 are the Sun-sail

and Earth-sail distances respectively.

3. The solar sail acceleration

The acceleration provided by the solar sail depends on its efficiency,
defined by the sail lightness number β, and its orientation, parame-
terised by two angles α δ, . In this paper we consider the simplest model
for a solar sail; that is, we assume it to be flat and perfectly reflecting.
Hence, the acceleration due to the SRP is in the normal direction to the
surface of the solar sail. For more realistic model one should include
the effect due to the absorption of the photons by the surface of the sail,
as well as the specular and diffusive reflection [21,22], more realistic
models also include surface imperfections [23,24]. In this case, we
must add an extra component in the transverse direction to the sail that
will change the efficiency of the sail and the direction of the accelera-
tion vector. These changes can be quantified and are small for a high-
performance sail whose orientation is close to perpendicular with
respect to the Sun-sail line.

The force produced by the reflected photons is given by
PAF n r n= 2 , sr

2 , where P P R R= ( / )0 0
2 is the SRP magnitude at a

distance R from the Sun (being P = 4.563 N/m0
2 the SRP magnitude

at R = 10 AU), A is the frontal area of the solar sail, rs is the Sun-sail
direction and n is the normal direction to the surface of the sail (both
unit vectors). Notice that unless the sail is perpendicular to the Sun-sail
line the vectors n and rs are different. As the SRP is proportional to the
inverse square of the distance to the Sun, it is common to write its
effect as a correction of the Sun's gravitational attraction [13]:
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where β corresponds to the sail lightness number, which accounts for
the sail's effectiveness. One can also interpret β as the ratio between the
solar sail acceleration and the gravitational attraction. According to
McInnes [13].
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where σ m A= / is the inverse of the area-to-mass ratio of the solar sail.
We call characteristic acceleration, a0, to the acceleration experienced
by the sailcraft at 1 AU and face-on to the Sun (i.e., a β Gm= /1AUsun0

2).
This means that a sail lightness number β = 0.03 corresponds to a
characteristic acceleration a = 0.179804 mm/s0

2. Moreover, if we have a
total spacecraft mass of 10 kg the solar sail area must be approximately
14×14 m2 for a sail lightness number β = 0.03. Table 1 lists, for
different sail lightness numbers β, the corresponding inverse of the
area-to-mass ratio (σ), the characteristic acceleration (a0) and the size
of the solar sail for 10 kg of total spacecraft mass.

The sail orientation is given by the normal direction to the surface
of the sail, n n nn = ( , , )x y z , and is parameterised by two angles α and δ
that measure the orientation of n with respect to the Sun-sail direction

x μ y z rr = ( − , , )/s ps. Following [14], we take r p q{ , , }s an orthonormal
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r z

×
| × |

s

s
and

q = r z r
r z r

( × ) ×
|( × ) × |

s s

s s
. Then we define α α δ α δn r p q= cos + sin cos + sin sins .

Hence,
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