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A B S T R A C T

The rapid large angle attitude maneuver capability of spacecraft is required during many space missions. This
paper addresses the challenge of time-optimal spacecraft attitude maneuver under boundary and pointing
constraints. From the perspective of the optimal time, the constrained attitude maneuver problem is
summarized as an optimum path-planning problem. To address this problem, a metaheuristic maneuver path
planning method is proposed, Angular velocity-Time Coding Differential Evolution (ATDE). In the ATDE
method, the angular velocity and time are coded for attitude maneuver modeling, which increases the number of
variables and results in a high-dimensional problem. In order to deal with this problem, differential evolution is
employed to perform variation and evolution. The boundary and pointing constraints are constructed into the
fitness function for path evaluation. Finally, numerical simulations for the different cases were performed to
validate the feasibility and effectiveness of the proposed method.

1. Introduction

With the continued development of space missions, the require-
ment for rapid large angle attitude maneuver capability is urgent [1,2],
especially for disaster warning, scientific exploration, military applica-
tions, and other tasks. The Guidance, Navigation, and Control (GNC)
system of a spacecraft is required to provide appropriate control
torque, allowing the spacecraft to move from its current attitude to a
new attitude in the possible shortest time [3].

For spacecraft attitude maneuver, the light of bright celestial bodies
(such as the sun) should be prevented from entering the view field of
certain optical sensors (such as an infrared sensor or low-light sensitive
elements), as this could lead to temporary blindness or damage of the
optical sensors. During maneuvering, the process direction vector of
the solar array must be maintained within certain requirements to
continuously provide electric energy supply. These directional con-
straints greatly limit the feasible region of spacecraft attitude maneuver
[4]. Additionally, the limit of the angular velocity and control torque
will also affect the attitude maneuver path [5]. Due to these complex
constraints, the planning of a time-optimal maneuver path can be very
challenging for a spacecraft GNC system.

The constrained attitude maneuver problem has been studied
previously. McInnes et al. [6,7] introduced the pointing constraint into

the structure of the potential function, and obtained the control input
expression by application of the second differentiable method of
Lyapunov. This method required less calculation resources, but utilized
the Euler angle to represent kinematic and dynamic constraints, which
is vulnerable to a singular point. Additionally, the limit of the angular
velocity and control torque and meaningful attitude maneuver perfor-
mance indicators (time, energy, etc.) were not considered in these
studies. Frazzoli [8] used stochastic programming theory to facilitate
the planning method of an attitude maneuver path, with a focus on the
efficiency of the algorithm. On this basis, Zhong [9] mapped attitude-
pointing constraints to the Rodrigues space to improve planning speed.
However, there was no consideration of attitude dynamics, and this
method requires modification before practical application. Kim [10]
used a semi-definite programming method to complete a single-step
plan, that required control input torque of current time. A single-step
control mode can easily violate the constraints due to limited torque
control.

It is difficult to realize a time-optimal spacecraft attitude maneuver
under complex constraints because the solutions are related to complex
nonlinear problems. The analytical solutions are difficult to obtain by
indirect methods. Melton [11] provided a suboptimal solution using a
numerical method from the perspective of optimal control. Although the
theoretical interest in such an approach is evident, it is very computa-
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tionally intensive and may not be generalizable for rest-to-rest motions in
obstacle-free environments. Spiller et al. [12] employed a metaheuristic
approach and a method based on the evolution of kinematics and the
successive obtainment of the control law was presented as inverse
dynamics particle swarm optimization. Ultimately, a near-optimal solu-
tion was obtained, which fully satisfies all the pointing constraints and
boundaries.

This paper was inspired by this work of Spiller et al. The boundary
constraints and pointing constraints are separately described and
analyzed in detail. The pointing constraints were translated to quad-
ratic form to simplify the representation and computation in the state
space of attitude. From the perspective of optimal time, the constrained
attitude maneuver problem is summarized as an optimum path-
planning problem. On the basis of a metaheuristic approach, a novel
attitude maneuver path planning method called Angular velocity-Time
Coding Differential Evolution (ATDE) is proposed here to obtain the
maneuver path. In the ATDE method, the angular velocity and time are
coded for attitude maneuver modeling, which increases the number of
variables resulting in a high-dimensional problem. To deal with this
problem, a differential evolution approach was employed for variation
and evolution [13,14]. The boundary and pointing constraints were
constructed into the fitness function for path evaluation. Finally,
numerical simulations for the different cases were performed to
validate the feasibility and effectiveness of the proposed method.

2. Attitude constraints of spacecraft

It is essential to describe and analyze the attitude constraints of the
spacecraft during attitude maneuvering in detail. In this section, the
constraints of kinematic, dynamics, boundary and attitude-pointing are
described. In particular, the attitude-pointing constraints (including
forbidden and mandatory constraints) are translated to quadratic form
to simplify the representation and computation in attitude quaternion
space.

2.1. Attitude kinematic and dynamic constraints

To avoid singularity, the unit quaternion representation is utilized
to parameterize maneuvering. So for the rigid spacecraft, the attitude
dynamic and kinematic constraints are expressed as follows [15,16]：

uJω ω Jω̇ = − × (1)

qq Qω Ω̇ = 1
2
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2 (2)

where q q q q q= [ , , , ]0 1 2 3
T is the unit quaternion representing the
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J is the moment of inertia, J diag J J J= ( , , )1 2 3 . u is the control torque,
u u u u= [ , , ]1 2 3

T. ω× is the cross-product matrix of angular velocity ω:
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2.2. Boundary constraints

During implementation, the control torque is bounded and must
satisfy the following constraint:

u γ i≤ = 1, 2, 3i T (5)

During an attitude maneuver, some sensors require mild angular
velocity for conducting normal work. Thus, the angular velocity needs
to be limited within a certain range and satisfy the following constraint:

ω γ i≤ = 1, 2, 3i ω (6)

2.3. Attitude-pointing constraints

Attitude-pointing constraints depend on the external environment
of the spacecraft, which decreases the potential region of attitude space.
Once the constraints are exceeded, some payload of the spacecraft will
be damaged, thereby affecting the mission. So the analysis of pointing
constraints is a basic program. Overall, attitude-pointing constraints
can be divided into two categories——forbidden constraints and
mandatory constraints [17].

2.3.1. Forbidden constraint
Spacecraft often have some sensitive instruments, which will be

used to perform space tasks. It is essential to avoid bright celestial
objects in the field of view of the perception sensors. In mathematical
terms, the vector angle between the sensitive instruments and the sun
should be greater than the field of view of the sensitive instruments.
This constraint is considered a forbidden constraint.

As shown in Fig. 1, rB represents the direction vector of the sensitive
instrument in the body coordinate system. θ is the field of view of the
sensitive instrument. rI is the direction vector of a bright celestial object
(e.g., the sun) in an inertial coordinate system. The angle between rI
and rB should be greater than θ . This forbidden constraint can be
expressed in the form of Eq. (7).

r C r θ( ) ≤ cosB
T

BI I (7)

where r r r r= [ ]B B B B T
1 2 3 , r r r r= [ ]I 1 2 3

T, CBI represents the spacecraft
attitude cosine matrix from the inertial coordinate system to the body
coordinate system. Considering the relative motion between the space-
craft and the sun:
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where q is the vector part of quaternion and q q q q= [ , , ]1 2 3
T, rI

× is the
cross product matrix of rI .

We can turn the Eq. (7) into a more compact form and provide the
Eq. (9) in the form of quadratic constraints [16].
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where rB
× is the cross-product matrix of rB.

Fig. 1. Schematic of forbidden constraint.
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