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A B S T R A C T

In recent years, manifold dynamics has assumed an increasing relevance for analysis and design of low-energy
missions, both in the Earth-Moon system and in alternative multibody environments, and several space
missions have already taken advantage of the results of the related studies. Recent efforts have been devoted to
developing a suitable representation for the manifolds, which would be extremely useful for mission analysis
and optimization. This work describes and uses a recently-introduced, intuitive polyhedral interpolative
approach for each state component associated with manifold trajectories, both in two and in three dimensions.
A grid of data, coming from the numerical propagation of a finite number of manifold trajectories, is used. This
representation is employed for some invariant manifolds, associated with the two planar Lyapunov orbits at the
collinear libration points located in the proximity of the Moon, and with a three-dimensional Halo orbit.
Accuracy is evaluated, and is proven to be satisfactory, with the exclusion of limited regions of the manifolds.
This paper describes the use of this polyhedral representation for the detection of homoclinic and heteroclinic
connections. In particular, a variety of homoclinic trajectories connected with two Lyapunov orbits are detected.
Then, the polyhedral interpolating technique is successfully employed for the determination of heteroclinic
connections between the manifolds associated with the Lyapunov orbits. Lastly, near-homoclinic connections
between the manifolds emanating from a Halo orbit are detected. The results achieved in this paper prove utility
and effectiveness of the polyhedral interpolative technique for detecting manifold connections in the circular
restricted three-body problem, and represent the premise for its application to space mission analysis involving
invariant manifold dynamics.

1. Introduction

Analysis and design of low-energy trajectories to the Moon has
attracted a strong interest in the last decades. Exterior and interior
transfers, based on the transit through the regions where the collinear
libration points L1 and L2 are located, have been studied for a long time
and some missions have already taken advantage of the results of these
studies. Examples are the European Smart-1 mission [1], the Japanese
Hiten mission [2], and the NASA missions Genesis [3], Artemis [4],
and GRAIL [5]. These missions exploit special classes of unstable
periodic orbits that are proven to exist in the context of the circular
restricted three-body problem.

In general, unstable orbits are associated with stable and unstable
invariant manifolds, which are composed of all the trajectories
asymptotically departing from or converging into the periodic orbit of
interest. They are ideally traveled without any propellant consumption,
albeit a modest fuel amount is concretely needed for manifold injection
and orbit maintenance. The use of invariant manifolds allows designing
a great variety of space missions, associated with modest propellant

budgets. Similar concepts have been developed also for possible
missions in the Jovian [6] and Saturnian systems [7]. Transfer
trajectories employing invariant manifolds have been investigated by
Marsden et al. [8], Gomez and Masdemont [9], and Davis et al. [10].
Marson et al. [11] addressed the problem of deploying a small satellite
constellation around the Moon by employing invariant manifolds.
Giancotti et al. [12,13] and Pontani and Teofilatto [14,15] proposed
a useful cylindrical isomorphic mapping for investigating manifold
dynamics in the planar circular restricted three-body problem.

Recent efforts have been devoted to developing a suitable repre-
sentation for the trajectories that form the manifolds, which would be
extremely useful for mission analysis and optimization. Typically, the
invariant manifold trajectories are numerically propagated along the
directions associated with the eigenvectors of the monodromy matrix.
This is a computationally expensive task, and an interpolative approach
is desirable for mission design and optimization. With this intent,
Howell et al. [16] proposed two approaches: the first employs splines,
while the second technique is based on using a cell structure for the
purpose of approximating the manifold. Moreover, Masdemont [17]
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employed higher order expansions around libration point orbits,
whereas Ozimek and Howell [18] and Martin and Conway [19] used
bicubic spline interpolation.

The manifolds are topologically two-dimensional, because each
point belonging to them (and the position and velocity) can be
identified by means of two quantities: (i) the injection point along
the periodic orbit, and (ii) the time of flight on the manifold. This
fundamental property discloses the possibility of representing the
position and velocity components as functions of two variables. This
means that geometrically each component is associated with a surface,
which nevertheless cannot be described in any analytical, closed form.

The polyhedral interpolation technique [20–22] represents an
intuitive approach that allows expressing each state component as a
piecewise linear function of the two mentioned quantities. Its effec-
tiveness in determining optimal impulsive and low-thrust transfers was
proven in a recent paper [22].

The work that follows is intended to extend the use of the
polyhedral representation to the detection of homoclinic and hetero-
clinic connections. These are special trajectories that belong simulta-
neously to two distinct manifolds. If these two manifolds emanate from
the same periodic orbit, then the connection is termed homoclinic.
Conversely, if the two manifolds are associated with two distinct
periodic orbits, the connection is referred to as heteroclinic.
Specifically, after evaluating the accuracy of the representation at
hand, three applications are illustrated, i.e.,

(a) identification of the symmetric homoclinic connections associated
with the left and right manifolds of the Lyapunov orbit at L1 and
with the left manifolds of the Lyapunov orbit at L2;

(b) detection of the heteroclinic connections between the manifolds
associated with the Lyapunov orbits at L1 and at L2;

(c) determination of near-homiclinic paths emanating from a Halo
orbit.

In the end, this work has the objective of describing and applying
this new representation for the invariant manifolds for the detection of
manifold connections, pointing out its simplicity, ease of use, and
satisfactory accuracy.

2. Circular restricted three-Body problem

The circular restricted three-body problem (CR3BP) models the
dynamics of three bodies with masses m1, m2, and m3, under the
assumption that m m m> > > ≈ 01 2 3 . This means that the mass of the
third body (i.e. the spacecraft), m3, is considered negligible, whereas the
remaining massive bodies, termed the primaries, describe counter-
clockwise circular orbits around their center of mass. This model
approximates the dynamics of a spacecraft subject to the gravitational
attraction of the Earth and of the Moon (that represent the primaries),
under the assumption that the Moon motion around the Earth is
planar.

The problem is conveniently described in synodic coordinates,
which represent a coordinate system rotating with the two primaries.
The x-axis connects the two primaries and is directed from the Earth to
the Moon, the y-axis lies in the plane of their motion, and the z-axis
points toward the direction of angular momentum. This problem is
analyzed by employing canonical units, which represent a set of
convenient normalized units. The distance unit DU is the (constant)
distance between the two primaries (1 DU =384400 km), whereas the
time unit TU is such that the two primaries complete a single orbit in a
period equal to π2 TU (1 TU =375190 s). If μE and μM denote
respectively the gravitational parameter of the Earth and of the
Moon, these definitions of TU and DU imply that
μ μ+ = 1DU /TUE M

3 2. After introducing the parameter
μ μ μ μ: = /( + )M E M (=0.012155), it is straightforward to rewrite the
gravitational parameters of the two primaries as

μ μ μ μ= 1 − and = (DU /TU )E M
3 2 . Their positions along the x-axis are

x μ= −E and x μ= 1 −M (DU).

2.1. Equations of motion and Jacobi integral

In the synodic reference frame, let x y z( , , ) and v v v( , , )x y z denote the
coordinates of position and velocity. The equations of motion [23] of
the CR3BP are

x v̇ = x (1)

y v̇ = y (2)

z v̇ = y (3)

v Ω
x

v̇ = ∂
∂

+ 2x y (4)

v Ω
x

v̇ = ∂
∂

− 2y x (5)

v Ω
z

̇ = ∂
∂z (6)

where

Ω x y μ
r

μ
r

: = +
2

+ 1 − +
E M

2 2

(7)

r x μ y z r x μ y z: = ( + ) + + : = ( + − 1) + +E M
2 2 2 2 2 2

(8)

Eqs. (1)–(6) can be written in compact form as

x y z v v vX f X Ẋ = ( ), : =[ ]x y z T (9)

It is relatively straightforward to demonstrate that an integral exists
for this dynamical system: the Jacobi integral, whose value is referred
to as the Jacobi constant and denoted with C [23],

C Ω v v v= 2 − ( + + )x y z
2 2 2

(10)

The value of C remains unchanged, and is associated with the
energy of the dynamical system.

The Jacobi integral represents an invariant quantity and can be
regarded as an equality constraint for the dynamical system under
consideration. This circumstance implies that once C is specified, only
five out of six initial conditions (for the components of position and
velocity) are independent. An elegant way of incorporating the Jacobi
constant in the dynamic equations consists in extending to three
dimensions the two-dimensional Birkhoff's equations [15,24]. After
introducing the angles γ and β illustrated in Fig. 1, due to Eq. (10) the
three components vx, vy, and vz can be rewritten as

v Ω C β γ= 2 − cos cosx (11)

v Ω C β γ= 2 − cos siny (12)

Fig. 1. : Synodic reference frame and velocity angles γ and β .
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