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A B S T R A C T

A novel instantaneous GNSS ambiguity resolution approach which makes use of only single-frequency carrier
phase measurements for ultra-short baseline attitude determination is proposed. The Monte Carlo sampling
method is employed to obtain the probability density function of ambiguities from a quaternion-based GNSS-
attitude model and the LAMBDA method strengthened with a screening mechanism is then utilized to fix the
integer values. Experimental results show that 100% success rate could be achieved for ultra-short baselines.

1. Introduction

The Global Navigation Satellite System (GNSS) is conceived as a
viable alternative or complement to traditional attitude sensors for
attitude determination of land, sea, air, and space vehicles [1–14]. The
key to high-precision GNSS attitude determination is integer ambiguity
resolution. Compared with motion-based ambiguity resolution meth-
ods [11,15–17] which exploit the time-varying receiver-satellite geo-
metry, search-based methods [7,12–14,18–25] achieve instantaneous
attitude determination and can be used in GNSS-challenged environ-
ments where frequent losses of lock occur. Among various search-
based methods, the LAMBDA (Least-squares AMBiguity Decorrelation
Adjustment) method [20,26] and its variants [6–9,21,22,27,28] have
been widely used for their numerical efficiency and high success rate.
The LAMBDA method requires both code and carrier phase observa-
tions. The contribution of code measurements is that they restrict the
search space of integer ambiguities from infinity to a small region. A
high success rate can benefit from a low code noise level. Conversely, a
poor quality of code measurements results in degraded performance
[8].

The present study seeks a solution to LAMBDA ambiguity resolu-
tion for attitude determination without aid of code measurements. This
will be useful for applications under higher code noise and/or multi-
path environments (low-end GNSS receivers, urban canyons, etc.). The
multivariate GNSS-attitude model [8,9,22] associates double-differ-
enced (DD) phase ambiguities with multi-antenna platform attitude in
a probabilistic manner. The scale of the probability space of ambi-
guities is related to baseline length. For ultra-short baseline attitude
determination, the ambiguity probability space is sufficiently small.

There is no need to use additional code measurements to restrict the
ambiguity space. In this study, the Monte Carlo sampling (MCS)
method [29–32] is employed to construct the probability density
function (pdf) of ambiguities conditioned on DD phase observations.
The constructed pdf is used to obtain the expectation and covariance of
ambiguities, which are fed to standard LAMBDA for integer ambiguity
resolution.

2. Quaternion-based GNSS-attitude model

Consider a set of m+1 (m ≥ 2) receivers/antennas tracking n+1
common GNSS satellites. The doubled-differenced carrier phase ob-
servations formed with m independent baselines are cast into the
following multivariate GNSS-attitude model [22].

λΦ GRF Z V V Q
R Z

= + + ; Cov(vec( )) =
∈ ; ∈ n m3×3 ×  (1)

where Φ is the (n × m) matrix containing the DD phase observations
from the m baselines, F is the (3 × m) matrix of baseline coordinates
(expressed in the local coordinate system of the multi-antenna plat-
form), R is the (3 × 3) matrix of coordinate transformation from the
local coordinate system to the GNSS reference system, G is the (n × 3)
matrix of double-differenced unit line-of-sight vectors, Z is the (n × m)
matrix of integer ambiguities (expressed in cycles), λ is the carrier
phase wavelength, and V is the (n × m) matrix of observation noises.
The vector operator vec(∙) is defined as stacking the columns of the (n ×
m) matrix V into the vector vec(V) of order nm. Q is the covariance
matrix of vec(V) and is constructed as follows
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where σ is the standard deviation of undifferenced phase noise and the
operator ⊗ denotes the Kronecker product. The unknowns to be
resolved in model (1) are the integer ambiguities and the 3 × 3
orthonormal attitude matrix R.

In this study, the attitude matrix is parameterized with quaternion
representation. Model (1) is further written as the following quater-
nion-based observation equation

λΦ GR q F Z V V Q
q Z

= ( ) + + ; Cov(vec( )) =
∈ ; ∈ n m4×1 ×  (3)
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where the quaternion qq q= ( , ) ,T
0 4 q q qq = ( , , ) ,T

0 1 2 3 and q q = 1.T

3. Monte Carlo sampling approach

3.1. Constructing pdf of ambiguities

Based on model (3), the DD ambiguities are functions of attitude
quaternion and DD phase observations

λ
Z Φ GR q F V= 1 ( − ( ) − )

(5)

where the quaternion q and observation noise matrix V are regarded as
independent random variables.

The observation noises are assumed to be normally (Gaussian)
distributed with mean zero and covariance Q. The pdf of vec(V) is

p N
π

ev v 0 Q
Q

( ) = ( ; , ) ≜ 1
(2 ) detnmV

v Q v
vec( )

−1/2 T −1

(6)

The probability distribution of q can be inferred from a priori
attitude information, which is usually obtained from coarse attitude
sensors or dead reckoning. Given a priori quaternion with lower bound
ql and upper bound q ,u a uniform distribution incorporating the norm 1
constraint can be formulated as follows
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with

∫ cdq = 1q q q
q
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where ql
0 and qu

0 are the vectorial parts of ql and q ,u respectively. The
lower bound ql and upper bound qu can be set to the 3σ error bounds of
a priori attitude estimation. In the absence of a priori attitude
information, ql

0 and qu
0 can be set to [−1, −1, −1]T and [1, 1, 1] ,T

respectively.
The pdf of ambiguities in terms of pdfs of q and vec(V) is [33]

∬p p p d dz
Z

q v q V( ) = ∂
∂vec( )
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D
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, ∈
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with
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λ
q V Φ GR q F V z= , ; 1 vec( − ( ) − ) ≤z

(10)

It is difficult to obtain the analytical expression of p z( ).Zvec( ) The
Monte Carlo method provides a convenient alternative to represent
pdfs of random variables for nonlinear/non-Gaussian systems by a set
of particles with associated weights.

The procedure of constructing p z( )Zvec( ) using the Monte Carlo
method is given as follows.

First, draw Ns particles from p q( )q and p v( )Vvec( )

p pq q v v∼ ( ); ∼ ( )i iq Vvec( ) (11)

Assign the particles with weights

w
N

i N= 1 , = 1, 2, ...,i
s

s
(12)

Second, propagate the particles according to Eq. (5)

λ
Z Φ GR q F V= 1 ( − ( ) − )i i i (13)

Finally, approximate the pdf p z( )Zvec( ) using the particles of

ambiguities wz{ , }i i i
N
=1
s

∑p wz z z( ) ≈ δ( − )
i

N

i iZvec( )
=1

s

(14)

where δ(∙) is the Dirac delta function.

3.2. Ambiguity resolution and attitude determination

The expectation and covariance of ambiguities can be evaluated
from the particles

∑ wz z=
i

N

i i
=1

s

(15)

∑ wP z z z z= ( − )( − )
i

N

i i i
T

=1

s

(16)

The expectation and covariance are then fed to LAMBDA for integer
ambiguity resolution. The LAMBDA method utilizes Z-transformation
to efficiently search for the ‘best’ integer vector which is closest to z in
the metric of P [26]. This criterion is generally valid for Gaussian
distributed ambiguities. However, the pdf p z( )Zvec( ) in this study is non-
Gaussian. The expectation does not contain much information about
the correct ambiguities and only represents an average value evaluated
on the probability space.

To address this problem, the LAMBDA algorithm implemented in
this study does not return only one integer vector but a specific number
of candidates in order of distance from z. A screening mechanism based
on internal consistency checking is employed to select the candidate
which best fits the GNSS-attitude model. The screening algorithm is
presented as follows.

3.2.1. Attitude matrix extraction
For each integer ambiguity candidate k Nẑ , = 1, 2,…, ,k c the

corresponding attitude matrix R̂k can be extracted by solving the
following linear matrix equation

λΦ Z GR F− ˆ = ˆk k (17)

where Ẑk is the matrix form of ẑ .k For the two baseline case (m=2), the
solution is a 3×2 matrix. The third column can be computed by the
cross product of the first two columns.

3.2.2. Quaternion inversion
The quaternion candidate q̂k can be obtained from R̂k according to
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