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A B S T R A C T

A vast wealth of literature exists on the topic of rocket trajectory optimisation, particularly in the area of
interplanetary trajectories due to its relevance today. Studies on optimising interstellar and intergalactic
trajectories are usually performed in flat spacetime using an analytical approach, with very little focus on
optimising interstellar trajectories in a general relativistic framework. This paper examines the use of low-
acceleration rockets to reach galactic destinations in the least possible time, with a genetic algorithm being
employed for the optimisation process. The fuel required for each journey was calculated for various types of
propulsion systems to determine the viability of low-acceleration rockets to colonise the Milky Way. The results
showed that to limit the amount of fuel carried on board, an antimatter propulsion system would likely be the
minimum technological requirement to reach star systems tens of thousands of light years away. However, using
a low-acceleration rocket would require several hundreds of thousands of years to reach these star systems, with
minimal time dilation effects since maximum velocities only reached about c0.2 . Such transit times are clearly
impractical, and thus, any kind of colonisation using low acceleration rockets would be difficult. High
accelerations, on the order of 1 g, are likely required to complete interstellar journeys within a reasonable
time frame, though they may require prohibitively large amounts of fuel. So for now, it appears that humanity's
ultimate goal of a galactic empire may only be possible at significantly higher accelerations, though the
propulsion technology requirement for a journey that uses realistic amounts of fuel remains to be determined.

1. Introduction

A wealth of literature exists on optimising space trajectories, in
particular interplanetary trajectories due to its application in the near-
future. A majority of the research focuses on optimising trajectories for
a specific propulsion system, rather than for a general propulsion
system that utilises the rocket equation. Solar sails appear to be the
favourite propulsion candidate for trajectory optimisation due to the
fact that there is no fuel consumption, hence considerably simplifying
the analysis: [1] used basic calculus to optimise the solar system exit
speed for a spacecraft using a solar sail; [2] optimised interplanetary
solar sail trajectories with respect to the flight time using particle
swarm optimisation; [3,4] used evolutionary neurocontrol to optimise
low-thrust interplanetary trajectories; [5] used sequential quadratic
programming to optimise the flight time for a small spacecraft to reach
the edge of the heliosphere using solar and nuclear electric propulsion
systems; and [6] used a genetic algorithm to optimise the fuel
consumption during orbital transfers. However, solar sails are not
practical for interstellar travel since they require a constant external

source of energy, which is not always present in the expanse of
interstellar space. Research conducted in optimising interstellar tra-
jectories have mostly been performed within a Newtonian model,
thereby simplifying the analysis by ignoring the relativistic effects of
time dilation.

The discovery that time is relative has raised many interesting
discussions, and has produced a plethora of literature on its effect on
interstellar travel. Within the scientific community, many authors have
examined the effects of time dilation whilst travelling interstellar and
intergalactic distances, though all but a few of the calculations were
performed in flat spacetime. [7,8], and [9] considered the effect of an
expanding universe when traversing intergalactic distances, and
showed that a constant acceleration is necessary if one wishes to reach
nearby galaxies within human lifetimes (though this is sensitive to the
cosmological parameters used). In the currently favoured cosmological
concordance model, a rocketeer accelerating at a constant rate of
g = 9.81 ms−2 is able to reach 99% of the way to the edge of the universe
well within a human lifetime ([9]), though upon return, many billions
of years would have passed for those living on Earth.
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Optimising an interstellar trajectory is an extremely complex and
difficult task, and producing the correct solution may not always be
possible. Almost all attempts consider either a Newtonian or special
relativistic approach, as a general relativistic approach compounds the
difficulty of the task. [10] derived the optimality conditions for rocket
trajectories in general relativity, though it was done from an analytical
approach and did not consider any specific trajectories. To date, very
little research has been performed on optimising interstellar trajec-
tories in a general relativistic framework.

2. Theory

2.1. General theory of relativity

The assumption of the constancy of the speed of light c means that
space and time could be unified into a single coordinate system where
the position of a particle is x t x y z= ( , , , )α . In the curved spacetimes of
general relativity, a rocketeer will experience kinematic and gravita-
tional time dilation. The proper time τ they experience is dependent on
their velocity magnitude as well as the local spacetime geometry,
described by a metric tensor gαβ.

The equations of motion of a traveller in curved spacetime in
Einstein summation convention is given by
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where a a a a a= ( , , , )α t x y z is the four-acceleration (the relativistic
analogue of three-acceleration), and the Christoffel symbols Γβγ

α de-
scribes the local spacetime geometry [11],

⎛
⎝⎜

⎞
⎠⎟g Γ

g
x

g
x

g
x

= 1
2

∂
∂

+
∂
∂

−
∂
∂αδ βγ

δ αβ
γ

αγ
β

βγ
α (2)

The parameters of a particle are related through two normalisation
conditions:

g u u c= −αβ
α β 2

(3)

g u a = 0αβ
α β

(4)

where u u u u u= ( , , , )α t x y z is the four-velocity (the relativistic analogue
of Newtonian three-velocity).

2.2. Milky Way mass model

To model the effect of spacetime curvature due to the mass of the
Milky Way, the static weak field metric will be used, which describes
the spacetime geometry in a weak, time-independent, gravitational
field, such as that of the Milky Way ([12]). The static weak field
depends on the Newtonian gravitational potential Φ, and is described
by the metric
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The gravitational potential due to the Milky Way galaxy is made up
from the gravitational effects of the bulge, disk, and dark matter halo.
The Miyamoto-Nagai disk, Hernquist bulge, and Navarro-Frenk-White
potential models are used to model the gravitational influence of the
galactic disk, bulge, and halo, respectively.

The potential of the Miyamoto-Nagai disk ([13]) is given by
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where M M= 10 × 10d
10

⊙ is the mass of the disk, rd=6.5 kpc is the scale
length of the disk, and bd=0.26 kpc is the scale height of the disk
([14]).

The potential of the Hernquist Bulge ([15]) is given by
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where M M= 3.4 × 10b
10

⊙ is the mass of the bulge and rb=0.7 kpc is the
scale length of the bulge.

The potential of the Navarro-Frenk-White Halo ([16]) is given by
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where Mh is the mass of the halo and rh is the scale length of the halo.
The mass and scale lengths are calculated from the virial mass Mv of
the halo, which is the enclosed halo mass at the virial radius Rv. The
exact size of a galaxy is difficult to quantify as the halo mass density
extends out continuously into intergalactic space, and the virial radius
can be thought of as the radius beyond which the halo blends into the
background matter in the universe. For the Milky Way, the virial mass
is roughly M M= 150 × 10v

10
⊙ ([17]). The virial radius is calculated from

the virial mass using ([18])
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where H = 70.4 × 10 kms Mpc0
−3 −1 −1 is the Hubble constant, Ω = 0.3m ,

and Δ = 340th is the Hubble constant, matter density of the universe,
and over-density of dark matter compared to the average matter
density, respectively [19].

The mass and scale lengths of the dark matter halo are related to
the virial mass and virial radius via the dark matter halo concentration,
which is described by the halo concentration parameter ch, approxi-
mated by [20]
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where z is the redshift, which is zero for host dark matter halos. The
mass [21] and scale length [22] of the halo are then given by
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The gravitational potential of the Milky Way is then the sum of each
of the individual components.

2.3. Relativistic rocket

For a relativistic rocket, the proper acceleration a (i.e. the accel-
eration as experienced by the traveller) is related to the rate of change
of mass of the rocket [23] by

∫ ∫c
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where ve is the effective exhaust velocity of the propellants. If the
rocket expends all its fuel after a proper time of τf, then it is
straightforward to show that
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where mr is the final mass of the rocket. If the mass of the fuel is mf,
then m m m= +f r0 , and hence
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where β is the fuel-to-empty rocket mass ratio. Smaller values of ve will
result in a larger value of β, and hence more fuel will be required as
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