
Author's Accepted Manuscript

Ignition of a polymer propellant of hybrid rocket motor by a hot particle

D.O. Glushkov, G.V. Kuznetsov, P.A. Strizhak

 PII:
 S0094-5765(16)30250-8

 DOI:
 http://dx.doi.org/10.1016/j.actaastro.2016.10.030

 Reference:
 AA6052

To appear in: Acta Astronautica

Received date: 13 March 2016 Revised date: 25 June 2016 Accepted date: 21 October 2016

Cite this article as: D.O. Glushkov, G.V. Kuznetsov and P.A. Strizhak, Ignition of a polymer propellant of hybrid rocket motor by a hot particle, *Act. Astronautica*, http://dx.doi.org/10.1016/j.actaastro.2016.10.030

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

Ignition of a polymer propellant of hybrid rocket motor by a hot particle D.O. Glushkov, G.V. Kuznetsov, P.A. Strizhak*

National Research Tomsk Polytechnic University, 30, Lenin Avenue, Tomsk, 634050, Russia

* Corresponding author.

E-mail addresses: dmitriyog@tpu.ru (D.O. Glushkov), kuznetsov@tpu.ru (G.V. Kuznetsov), pavelspa@tpu.ru (P.A. Strizhak).

Abstract

The ignition of polymethylmethacrylate (typical model propellant of the hybrid rocket motor) by a hot particle in a shape of parallelepiped, polyhedron, disk is investigated numerically. The initial temperature of a heat source varied within the range 950–1150 K, size of particle – within the range 2–6 mm. It is established that varying these parameters influenced significantly the main characteristic of the process – ignition delay time under ignition conditions close to critical. For considered shape of particles, ignition delay time is in ascending sequence: parallelepiped, polyhedron, disk. Three polymer ignition regimes, which characterized by the initial temperature of a heat source, ignition delay time and a location of an ignition zone in a vicinity of a hot particle, are emphasized. It is illustrated that taking into account the dependence of thermal and physical characteristics of polymethylmethacrylate on temperature, the ignition delay time increased due to augmentation of energy accumulated by a subsurface layer.

Keywords: hybrid rocket motor, polymer propellant, hot particle, ignition, mathematical simulation.

Nomenclature and units

Nomenciature and units	
a	thermal diffusivity $(m^2 \cdot s^{-1})$
С	specific heat $(J \cdot kg^{-1} \cdot K^{-1})$
D	diffusion coefficient $(m^2 \cdot s^{-1})$
E	activation energy ($J \cdot mole^{-1}$)
k	pre-exponential factor (s ⁻¹)
1	order of accuracy of numerical scheme
m	number of time steps
Ν	number of spatial steps
n	serial number of spatial step
Q ₁	volatiles enthalpy of oxidation $(J \cdot kg^{-1})$
Q ₁ ^{ign}	heat accumulated by gas mixture at $t=t_d(J)$
Q ₁ ^{ox}	heat released as a result volatiles oxidation at $t=t_d (J)$
Q_2^0	heat accumulated by hot particle at t=0 (J)
Q_2^{ign}	heat accumulated by hot particle at $t=t_d(J)$
Q ₃	polymer enthalpy of thermal decomposition $(J \cdot kg^{-1})$
Q_3^{dec}	heat spent on polymer thermal decomposition at $t=t_d(J)$
Q_3^{ign}	heat accumulated by polymer at $t=t_d(J)$
R	perfect gas constant $(J \cdot mole^{-1} \cdot K^{-1})$
S	relative error of integration in one dimensional case (%)
S _{err}	relative error of integration in two dimensional case (%)
S _{max}	total error (%)

Download English Version:

https://daneshyari.com/en/article/5472503

Download Persian Version:

https://daneshyari.com/article/5472503

Daneshyari.com