
Contents lists available at ScienceDirect

Acta Astronautica

journal homepage: www.elsevier.com/locate/aa

Analysis of impact of general-purpose graphics processor units in
supersonic flow modeling

V.N. Emelyanova, A.G. Karpenkob, A.S. Kozelkovc, I.V. Teterinaa, K.N. Volkovd,⁎, A.V. Yalozoc

a Faculty of Rocket and Space Engineering, Baltic State Technical University, St. Petersburg 190005, Russia
b Faculty of Mathematics and Mechanics, St Petersburg State University, Old Petergof, St. Petersburg 198504, Russia
c Russian Research Institute of Experimental Physics, Russian Federal Nuclear Center, Sarov 607188, Russia
d Faculty of Science, Engineering and Computing, Kingston University, London SW15 3DW, United Kingdom

A R T I C L E I N F O

Keywords:
Supersonic flow
Shock tube
Boundary layer
CFD
High-performance computing
Parallel algorithm
Speedup

A B S T R A C T

Computational methods are widely used in prediction of complex flowfields associated with off-normal
situations in aerospace engineering. Modern graphics processing units (GPU) provide architectures and new
programming models that enable to harness their large processing power and to design computational fluid
dynamics (CFD) simulations at both high performance and low cost. Possibilities of the use of GPUs for the
simulation of external and internal flows on unstructured meshes are discussed. The finite volume method is
applied to solve three-dimensional unsteady compressible Euler and Navier–Stokes equations on unstructured
meshes with high resolution numerical schemes. CUDA technology is used for programming implementation of
parallel computational algorithms. Solutions of some benchmark test cases on GPUs are reported, and the
results computed are compared with experimental and computational data. Approaches to optimization of the
CFD code related to the use of different types of memory are considered. Speedup of solution on GPUs with
respect to the solution on central processor unit (CPU) is compared. Performance measurements show that
numerical schemes developed achieve 20–50 speedup on GPU hardware compared to CPU reference
implementation. The results obtained provide promising perspective for designing a GPU-based software
framework for applications in CFD.

1. Introduction

Propulsion power engines play an important role in determining
space flight safety issues [1]. Modeling of fluid chemically reacting
flows and heat transfer in rocket engines is necessary for adequate
prediction of the functional efficiency and reliability of rocket engines
[2–5] and nozzles [6]. It was demonstrated tha graphic processor units
(GPU) could accelerate solution of these problems [7,8]. New genera-
tion of propulsion engines wjould also, definitely, need effective
mathematical simulations [9,10]. The present paper discusses the
effectiveness of GPU for fluid dynamics simulations relevant to space
flight safety.

The methods of computational fluid dynamics (CFD) are exten-
sively applied in design and optimization of rocket techniques to get
more insight into 3D unsteady flows through fluid or gas passages.
Accurate prediction of compressible flows still remains a challenging
task despite a lot of work in this area. The quality of CFD calculations of
the flows strongly depends on the proper prediction of flow physics
(shock waves, rarefaction waves, recirculation regions). Investigations

of heat transfer, skin friction, secondary flows, flow separation and re-
attachment effects demand reliable numerical methods, accurate
programming, and robust working practices.

The stagnation in the clock-speed of central processing units (CPU)
has led to significant interest in parallel architectures that offer
increasing computational power by using many separate processing
units. Modern graphics hardware contains such an architecture in the
form of the graphics processing units (GPU). GPU platforms including
GPU clusters make it possible to achieve speedups of an order of
magnitude over a standard CPU in many CFD applications and are
growing in popularity [11].

Fig. 1 shows that a recent GPU is significantly more powerful than
its CPU contemporary, and that the computing power of GPUs are
increasing at a greater rate than that of CPUs. The GPU employs a
parallel architecture so each generation improves on the speed of
previous ones by adding more cores, subject to the limits of space, heat
and cost. CPUs, on the other hand, have traditionally used a serial
design with a single core, relying instead on greater clock speeds and
shrinking transistors to drive more powerful processors. While this

http://dx.doi.org/10.1016/j.actaastro.2016.10.039
Received 18 August 2016; Received in revised form 22 October 2016; Accepted 25 October 2016

⁎ Corresponding author.
E-mail address: k.volkov@kingston.ac.uk (K.N. Volkov).

Acta Astronautica xx (xxxx) xxxx–xxxx

0094-5765/ © 2016 IAA. Published by Elsevier Ltd. All rights reserved.
Available online xxxx

Please cite this article as: Emelyanov, V., Acta Astronautica (2016), http://dx.doi.org/10.1016/j.actaastro.2016.10.039

http://www.sciencedirect.com/science/journal/00945765
http://www.elsevier.com/locate/aa
http://dx.doi.org/10.1016/j.actaastro.2016.10.039
http://dx.doi.org/10.1016/j.actaastro.2016.10.039
http://dx.doi.org/10.1016/j.actaastro.2016.10.039


approach has been reliable in the past, it is now showing signs of
stagnation as the limit of current manufacturing technology is being
reached. Recent CPUs, therefore, tend to feature two or more cores, but
GPUs still enjoy a significant advantage in this area [12].

Speed and accuracy are key factors in the evaluation of CFD solver
performance. In CFD applications, the increasing demands for accu-
racy and simulation capabilities produce an exponential growth of the
required computational resources. High performance computing
(HPC) resources are widely used in engineering applications.

The use of GPUs is a cost effective way of improving substantially
the performance in CFD applications [13]. Taking advantage of any
multi-core architecture requires programs to be written for parallel
execution. For CFD, this has traditionally meant splitting the flow
domain into several parts (domain decomposition) that are solved
independently on each processor node in a cluster, with the flow
properties at boundaries being communicated between the nodes after
each time step (processor balancing). This is also the process adopted
for GPUs, but the GPU introduces several additional constraints that
make the stream programming paradigm particularly useful [14].

Although GPU has attractive characteristics for massively parallel
computations, it has not been implemented in CFD for a long time due
to the complex programming techniques. Developers must have special
knowledge about computer graphics which is unfamiliar for general
CFD researchers. But thanks to the CUDA (Compute Unified Device
Architecture) library provided by NVIDIA, researchers are free from
the restrictions of computer hardware knowledge and need to concen-

trate on CFD algorithms and CUDA programming language.
Depending on the complexity of the CFD problem to represent and

solve, structured or unstructured meshes are used. Computational
algorithms are more efficiently implemented on structured meshes,
and data structures to handle the mesh are easy to implement [15,16].
However, structured meshes present poor accuracy if the problem to be
solved has complex internal or external boundaries. On the other hand,
unstructured meshes present more flexibility and higher accuracy to
represent problems that have complex geometries and boundaries [17].
However, the data structures to handle it are not easy to implement,
and also explicit neighboring information should be stored.

Much of the efforts in running CFD codes on GPUs has been
directed toward the case of CFD solvers based on structured and block-
structured meshes [14,18–23]. These solvers are easily to implement
on GPUs due to their regular memory access pattern. There are various
examples of implementation of CFD solvers on structured meshes for
simulation of flows of viscous incompressible fluid [24–26].

Unstructured mesh based analysis methods on HPC systems with
shared memory and distributed memory have been largely studied.
However, shared and distributed memory systems are fundamentally
different from GPUs. A GPU is a SIMT (Single Instruction Multiple
Thread) engine, whereas shared and distributed memory systems are
MPMD (Multiple Program Multiple Data) engines. However, the
common aspect of these parallel engines is that in both of them the
mesh application is limited by memory latency. Achieving good
performance for unstructured mesh based CFD solvers on GPUs is

Fig. 1. Floating point operations per second for the CPUs and GPUs.

V.N. Emelyanov et al. Acta Astronautica xx (xxxx) xxxx–xxxx

2



Download English Version:

https://daneshyari.com/en/article/5472542

Download Persian Version:

https://daneshyari.com/article/5472542

Daneshyari.com

https://daneshyari.com/en/article/5472542
https://daneshyari.com/article/5472542
https://daneshyari.com

