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A B S T R A C T

Considering the stringent requirement of the pointing accuracy up to 2.5″ of the World largest full steerable
telescope, this paper presents a coarse-fine mixed model to describe the azimuth rail unevenness. First, the
coarse-fine mixed model is proposed. In the model, the trigonometric function is utilized to describe the error
with long wavelength whilst the fractal function is used for the short wavelength errors, separately. Then the
mathematic model of the pointing accuracy is developed mathematically. Finally, the coarse-fine model and
point accuracy model are applied to Green Bank Telescope with valuable result. This paved the way for
predicting point error of Qi Tai Telescope.

1. Introduction

Over the last two decades, many countries have been racing to
construct the large radio telescopes, such as the Green Bank Telescope
(GBT) in America [1], the Effelsberg Telescope in Germany [2] and the
Sardinia Radio Telescope in Italy [3]. From 2014, China has been
planning to build the Qi Tai telescope (QTT), which will be a fully
steerable telescope with the world's largest aperture (110 m). QTT is
designed to work from 150 MHz to 115 GHz, which results in a
repeatable pointing accuracy requirement of 1.19 s. The whole tele-
scope structure is about 6000 t in weight and as high as a 30-floor
building [4]. Therefore, such a strict pointing accuracy requirement
imposes considerable difficulties on the design of QTT [5]. For the
factors affecting the pointing accuracy, the telescope itself is absolutely
the most important one, such as the inertia and elastic deformation of
the mount, the reflector and the rail. Currently, high-precision ratio
telescopes typically adopt the completely-welded rails. Compared to
non-welded rails, it avoids the large deformations at rail junctions, and
thereby prolongs the telescopes service life [6]. However, during the
manufacturing and welding processes, it is inevitable that errors such
as surface roughness and rail stress deformation are produced [7].
These errors are collectively referred to as rail unevenness. It can
directly lead to the azimuth frame errors in azimuth and pitching axis,
and then affect the pointing accuracy of telescope [8].

As early as 2000, Gawronski began to notice the effect of rail
unevenness on radio telescope. By the aid of an inclinometer, he
converted the measured unevenness data into errors of the telescope's
azimuth and pitch angles in accordance with their geometric relation-

ship [9]. Additionally, Pisanu considered the combined effects of the
deformation of the azimuth frame on pointing accuracy, which was
induced by rail unevenness and temperature drift [10]. Kong per-
formed the testing experiment on the rail unevenness and pointing
accuracy and analyzed the correlation between them [11]. Besides,
some researchers indirectly introduced the non-linear rail errors into
the construction of a telescope's pointing model [12]. Although many
fruitful results have been achieved [13], the description of rail
unevenness is too ambiguous, leading to immense fitting errors and
thereby severely affecting a telescope's ultimate pointing accuracy. An
accurate model of rail unevenness, which is required in studies
involving the effects of rail unevenness on pointing accuracy, has not
yet been constructed. And so a model for antenna pointing errors, in
which rail unevenness is taken into account, has still not to been
established. The qualitative relationship between rail unevenness and
the pointing accuracy of the antenna have not been found fundamen-
tally.

Aimed at solving the aforementioned problems, this article de-
scribes the rail unevenness using the Fourier series and the fractal
function, and innovatively proposed the coarse-fine mixed description
model. Finally, an influence relationship model of the rail unevenness
on the pointing accuracy was established based on the mixed model.

2. Coarse-fine mixed modeling of the rail unevenness

Errors that lead to rail unevenness primarily originate from two
aspects – the surface roughness produced in the machining process of a
single rail and the deformations produced during the welding process
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and post-processing. These two different kinds of surface error have
different characteristics [14,15]. The surface roughness is randomness,
high-frequency, low-amplitude, and small scale, while the deformation
is systematic, low frequency, and large amplitude. Based on these
distribution features, the large-scale deformation of rail unevenness
was fitted using the Fourier series [16]. Next, the Weierstrass-
Mandelbrot (W-M) fractal function was used to describe the fitting
residual error, and then, fitting function of the small-scale roughness
was conducted [17]. Finally, the coarse-fine mixed model of rail
unevenness was established, as shown below in Eq. (1).
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where, f x( )1 denotes the Fourier series; a a a b b, ,…, , ,…,n n0 1 1 denotes
the undetermined coefficient of f x( )1 ; m denotes the expansion order of
f x( )1 ; ω0 denotes the fundamental frequency of f x( )1 ; S denotes the rail
length described by F x( ) and is generally set as one third of the rail's
overall length; k denotes the number of rail segments when the W-M
fractal function is used for fitting rail unevenness; l denotes the fitting
length of f i

2 (k S l= / ) and is set as a round number; f A D L x y( , , , , )i
i i i

i i
2 0 0

denotes the i-th segment of the W-M fractal function f x( )2 ; Ai denotes
the amplitude height coefficient of f x( )2 , reflects the value of f i

2, and
determines the specific size of f i

2; Li denotes the sampling length of
f x( )2 ; Di denotes the fractal dimension of f x( )2 ; yi

0 and x i
0 denote the

longitudinal and lateral displacements of f x( )2 , respectively.
As shown in Eq. (1), the Fourier series f x( )1 and the W-M fractal

function f x( )2 codetermine the fitting precision of rail unevenness.
Moreover, higher expansion order of the Fourier series (m), will result
in higher the fitting precision is. Similarly, shorter the sampling length
of the fractal function (L), will result in the higher the fitting precision
is. In this work, the sampling length of the Weierstrass-Mandelbrot
(W-M) fractal function (L) equals the fitting length of the small-scale
function, and so determining the values of m and L is the key to
determining the unevenness model [18]. The determination methods
for these two key parameters are described in detail below [19]. The
optimization model based on the W-M fractal function can be
described as:

∑F y f x y y x N( ) = [ ( ( , ) − ( )) ]/
j

N
i

j j
=1

2
2

(2)

∑f x A
γ

πγ x x y( ) = 1 cos(2 ( + Δ )) + ΔD

n n

M

D n
n

2
( −1)

= 1
(2− )

(3)

Find y A D L x y

Min F y f x y y x N

S T x x
L L L
y y y

A A A
D D D

= ( , , , , )

. ( ) = [ ∑ ( ( , ) − ( )) ]/

. . 0 < <
< <
< <

< <
< <

i i i
i i T

j
N i

j j

i

i
i

i

i

0 0

=1 2
2

0 max

min max

min 0 max

min 2 max

min max (4)

The upper and lower limits of the variables were determined based
on their physical meanings. The physical meanings and the determina-
tion methods for the related parameters in the optimization model of
fractal function are described in the Fig. 1.

3. Effects of rail unevenness on the QTT's pointing accuracy

3.1. Effect of the rail unevenness on the azimuth frame error

To describe telescope's various errors and investigate their effects
on the pointing accuracy, four coordinate systems were constructed, as
shown in Fig. 2, the detailed descriptions of these coordinate systems
are provided below:
OXYZ - Geodetic coordinate system, in which the origin is located at the
center of the azimuth orbit, the Z-axis is perpendicular to the ground,
and the negative direction of the Y-axis points to true north.
O X Y Za a a a- Coordinate system rigidly connected to the azimuth axis, in
which the origin is located at the center of the azimuth orbit and the
Za-axis coincides with the azimuth axis. Overall, the coordinate follows
the rotation and deflection of the azimuth axis. When the telescope has
no errors along the azimuth axis and the azimuth angle equals zero
(i.e., A = 0°), O X Y Za a a ais identical to OXYZ .
O X Y Ze e e e-Coordinate system rigidly connected with the pitch axis in
which the origin is located at the middle of the pitch axis and the
Xe-axis coincides with the pitch axis. Overall, the coordinate follows the
rotation and deflection of the pitch axis. When the telescope has no axis
errors and the pitch angle and azimuth angle equal 90° and 0°,
respectively, O X Y Ze e e e only differs from OXYZ along the direction of
the Z-axis with a difference of the height of the azimuth axis h.

Fig. 1. Displays the detailed process for determining the parameters.
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