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A B S T R A C T

After being launched into space to perform some tasks, the inertia parameters of a space robotic system may
change due to fuel consumption, hardware reconfiguration, target capturing, and so on. For precision control
and simulation, it is required to identify these parameters on orbit. This paper proposes an effective method for
identifying the complete inertia parameters (including the mass, inertia tensor and center of mass position) of a
space robotic system. The key to the method is to identify two types of simple dynamics systems: equivalent
single-body and two-body systems. For the former, all of the joints are locked into a designed configuration and
the thrusters are used for orbital maneuvering. The object function for optimization is defined in terms of
acceleration and velocity of the equivalent single body. For the latter, only one joint is unlocked and driven to
move along a planned (exiting) trajectory in free-floating mode. The object function is defined based on the
linear and angular momentum equations. Then, the parameter identification problems are transformed into
non-linear optimization problems. The Particle Swarm Optimization (PSO) algorithm is applied to determine
the optimal parameters, i.e. the complete dynamic parameters of the two equivalent systems. By sequentially
unlocking the 1st to nth joints (or unlocking the nth to 1st joints), the mass properties of body 0 to n (or n to 0)
are completely identified. For the proposed method, only simple dynamics equations are needed for
identification. The excitation motion (orbit maneuvering and joint motion) is also easily realized. Moreover,
the method does not require prior knowledge of the mass properties of any body. It is general and practical for
identifying a space robotic system on-orbit.

1. Introduction

Space robots will play important roles in future space activities such
as inspecting, repairing, upgrading and refueling spacecraft [1–5].
They have the potential to extend satellite life, enhance space system
capability, decrease operation costs and clean up space debris. Due to
dynamic coupling, the motion of a manipulator alters the position and
attitude of the base. End-effectors lose the desired target pose (position
and attitude) due to the motion of the base [6,7]. This complicates the
trajectory planning and control of a space robotic system. Scholars have
presented some effective methods for handling the dynamic coupling
problem. Umetani and Yoshida presented the generalized Jacobian
matrix and resolved the motion control method [8]. Nakamura and
Mukherjee [9] used the “bidirectional approach” to plan a path for
controlling both the manipulator configuration and spacecraft orienta-
tion. Nenchev et al. [10] proposed the reaction null-space control
method to address dynamic interaction problems and suppress vibra-
tion in the flexible base manipulator. Yoshida et al. [11] addressed the

zero reaction maneuver concept and demonstrated it on the ETS-VII.
Xu et al. [12] proposed a method based on the particle swarm
optimization algorithm to plan the Cartesian point-to-point path of
the end-effector and adjust the base attitude simultaneously. Oda et al.
[13] proposed a coordinated control method of a space robotic system,
simultaneously using the arm controller and the satellite attitude
controller. The former estimates the disturbance momentum according
to the planned motion of the arm and the current attitude of the base.
Then, it sends the results to the satellite controller, which uses the
estimated values as feedforward commands to compensate for the
reaction of the arm. Angel Flores-Abad et al. [14] proposed an optimal
control method of space robots for capturing a tumbling object with
uncertainties. Zhu et al. [15,16] proposed a visual servo control
framework and corresponding close-loop position-based control strat-
egy for non-cooperative target autonomous capture. The pose and
motion of the target is estimated by the extended Kalman filter (EKF).
The preceding methods require accurate knowledge of the inertia
parameters (mass, inertia tensor, position of center of mass) of each
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body. Except for control purpose, these parameters are very important
for simulation and analysis on the ground to verify and evaluate the
system design, mission planning, tele-operation, and other key issues
of space robots. However, these parameters of the system may change
on orbit for many reasons, such as fuel consumption, payload deploy-
ment, hardware reconfiguration, target capturing, spacecraft docking
and mechanical malfunction. Methods are therefore required to
identify these dynamic parameters.

For a space robot, whose base is free-floating in 3D space, it has six
more degrees of freedoms – three for translation and three for rotation.
The dynamic modeling and parameter identification are more challen-
ging. Murotsu [17] proposed two methods for estimating the unknown
inertial parameters of manipulated objects. One is based on the linear
and angular momentum conservation law. The first method involves
measuring the displacements and velocities of the satellite and joints.
The second method is based on Newton-Euler equations of motion.
Identification methods based on these equations of motion usually use
force and torque measurements and identify the target parameters.
Yoshida et al. [18] presented a method for identifying the inertia
parameters of a free-flying space robot. Using the conservation of
momentum laws and considering the effect of gravity gradient torque
(unique characteristics in space), the identification algorithm did not
require torque or acceleration measurement. However, the mass and
centroid position of each body were assumed to be known and not
needed to be identified. Lampariello [19] proposed a method for
identifying the inertial parameters of a free-flying robot directly on
orbit using accelerometers. The method was applied to identify the
base body and load on the end-effector, emphasizing the experimental
design. In this case, the manipulator parameters were assumed to be
known in advance. Abiko and Hirzinger [20] studied online parameter
adaptation for momentum control in the post-grasping of a tumbling
target with model uncertainty. The proposed adaptation algorithm
required measuring the values of the coupling force between the base
satellite and robot arm. Only the target's inertia parameters were
identified. Ma and Dang [21] presented a robotics-based method for
the on-orbit identification of the inertia properties of spacecraft (the
base of the space robot), which required accurate kinematics and the
dynamic parameters of the manipulator to be known. Thai et al. [22]
developed an online momentum-based inertia-parameter identification
method for a grasped tumbling target in which the mass properties of
the base and manipulator were assumed to be known.

This paper presents a practical and effective approach to identifying
the complete inertia parameters of each body of the whole space robotic
system, including the base satellite, space manipulator and grasped
target. These parameters include the mass, inertia tensor and center of
mass position. Only simple dynamics equations are used for inertia
parameters identification. The excitation motion is also easily realized.
Moreover, no prior knowledge of the mass properties of any system
body is required. It is general and practical for on-orbit identifying a
space robotic system.

The remainder of this paper is organized as follows. In Section 2, we
derive the kinematics and momentum equations of a free-floating space
robotic system, establishing the theoretical foundation for inertia
parameters identification. In Section 3, we propose an identification
method for complete inertial parameters of all bodies based on simple
equivalent dynamic models. The identification problem is transformed
into non-linear optimization problems. The object functions about the
parameters to be determined are correspondingly defined. Section 4
resolves the inertia parameters using the Particle Swarm Optimization
(PSO) algorithm. The proposed method is verified in Section 5 based
on the simulations of a practical example. The final section presents the
summary and conclusion.

2. Modeling of space robotic system

2.1. Kinematics equations

It is assumed that a space robot is composed of a carrier spacecraft
(known as the Space Base or Base) and an n-DOFs (degrees of
freedom) manipulator (known as the Space Manipulator). The space
robot captures and services a target satellite (known as the Target).
The space robotic system can be considered as a serial system
composed of n+1 links which are connected by n active joints. The
kinematic link of the space robotic system is shown on Fig. 1. Each
joint is assumed to have only one DOF. B0 denotes the satellite main
body. Bi (i=1, …, n) denotes the ith link of the manipulator. Ji is the
joint connecting Bi-1 and Bi. Ci is the position of the center of mass
(CM) of Bi.

Some symbols and variables are defined as follows:
∑I: the inertia frame, also denoted as {xI, yI, zI}.
∑i(i=0, …, n): the body fixed frame of Bi, also denoted as {xi, yi, zi};

the zi-axis is the direction of Ji.
iAj∈R3×3: the rotation matrix of ∑j in relation to ∑i. When ∑i is the

inertia frame, the superscript i can be omitted.
E, O: the identity matrix and zeros matrix.
mi, M: mi is the mass of Bi and M = m∑i

n
i=1 .

iIi∈R3×3 (i=0, …, n): the inertia tensor of Bi in relation to its CM,
expressed in ∑i.

ki∈R3 (i=1, …, n): the unit vector representing the rotation
direction of Ji.

ri∈R3(i=1, …, n): the position vector of Ci.
rg∈R3: the position vector of the system CM.
pi∈R3(i=1, …, n): the position vector of Ji.
pe∈R3: the position vector of the end-effector.
ai, bi, li∈R3(i=0, …, n): the position vectors from Ji to Ci and Ci to

Ji+1, respectively, and li=ai+bi.
Θ∈Rn: the joint angle vector, i.e., Θ=[θ1, …,θn].
vi, ωi∈R3: the linear and angular velocity of Bi.
v0, ω0∈R3: the linear and angular velocity of B0.
Ψb ∈R3: the attitude angle of the base, expressed in terms of z-y-x

Euler angles, i.e.
Ψb=[αb,βb,γb]

T.
Based on Fig. 1, the position vectors of the centroid and end-

effector of Bi are given respectively as follows:
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Fig. 1. General model of a serial space robot.
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