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A new approach to multifidelity, gradient-enhanced surrogate modeling using polynomial chaos expan-
sions is presented. This approach seeks complementary additive and multiplicative corrections to low-
fidelity data whereas current hybrid methods in the literature attempt to balance individually calculated 
calibrations. An advantage of the new approach is that least squares-optimal coefficients for both 
corrections and the model of interest are determined simultaneously using the high-fidelity data directly 
in the final surrogate. The proposed technique is compared to the weighted approach for three analytic 
functions and the numerical simulation of a vehicle’s lift coefficient using Cartesian Euler CFD and 
panel aerodynamics. Investigation of the individual correction terms indicates the advantage of the 
proposed approach is that complementary calibrations separately adjust the low-fidelity data in local 
regions based on agreement or disagreement between the two fidelities. In cases where polynomials 
are suitable approximations to the true function, the new all-at-once approach is found to reduce error 
in the surrogate faster than the method of weighted combinations. When the low-fidelity is a good 
approximation of the true function, the proposed technique out-performs monofidelity approximations 
as well. Sparse grid constructions alleviate the growth of the training set as root-mean-square-error is 
calculated for increasingly higher polynomial orders. Utilizing gradient information provides an advantage 
at lower training grid levels for low-dimensional spaces, but worsens numerical conditioning of the 
system in higher dimensions.

Published by Elsevier Masson SAS.

1. Introduction

Modeling fidelity is the degree to which a method of predic-
tion, analysis, or experimentation accurately reproduces an effect 
of interest. Models of varying fidelity levels are ingrained in the 
aerospace design process from conceptual design through detailed 
design to test and evaluation. A pervasive challenge is manag-
ing the balance between highly-accurate predictions and cheaper, 
more expedient methods. As George Box famously stated [1], “Es-
sentially, all models are wrong, but some are useful.” Unfortu-
nately, the boundaries of usefulness may even be unknown as 
aircraft designs deviate further and further from the body of his-
torical data.

Predictions of different fidelities may be combined as an en-
semble of data without preference [2,3], or more commonly used 
in a hierarchy in which one dataset is believed to be more trust-
worthy (termed high-fidelity) than another (low-fidelity). These hi-
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Table 1
Some possible combinations of variable-fidelity methods.

High-fidelity model Low-fidelity model

Experimental data CFD results
Navier–Stokes Euler
Euler Panel methods
Finer mesh CFD results Coarser mesh CFD results
Fully converged solutions Partly converged solutions
Detailed geometry Simplified geometry

erarchical methods seek to predict response trends using intensely-
sampled low-fidelity data and reserve high-fidelity evaluations to 
correct inaccuracies in the low-fidelity data. Possible examples of 
high-fidelity versus low-fidelity data sources for aerodynamic pre-
dictions are provided in Table 1.

A variety of examples combining predictions from multiple 
sources may be found in the literature, with significant cross-over 
between the design optimization and uncertainty quantification 
communities. Early works tend to focus on polynomial interpo-
lation and regression and Taylor series expansions, while more 
recent research is split primarily between polynomial and krig-
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ing models, though other surrogate model forms (e.g., radial basis 
functions and support vector regression) are also in use [4]. Users 
of polynomial models often leverage the simplicity of its form 
and fast prediction of statistical moments based on the readily-
available coefficients, whereas users of kriging take advantage of 
its nonlinear modeling capabilities and estimates of model vari-
ance and error. Corrections to the low-fidelity response may take 
the form of input space mappings [5], or, more commonly, out-
put space mappings (commonly referred to as bridge, correction, 
or calibration functions). These bridge functions typically take the 
form of additive or multiplicative corrections, or a combination of 
the two. However, it is difficult to know a priori which form to use 
for a particular fidelity pairing and in what order to apply the cor-
rections.

The approach taken in generating multifidelity models typically 
varies with application. Gradient-based optimization typically re-
lies on local corrections of the lower-fidelity model to match the 
response value and gradient of the high-fidelity model, forming 
the basis of Trust Region Model Management [6] and Approxi-
mation Management Framework [7], which provably converge to 
optima of the high-fidelity model. The Global–Local Approxima-
tion technique utilizes analytic structural gradients to produce lin-
ear multiplicative scaling functions local to a design point, and 
was introduced by Haftka [8] for different model discretizations 
and extended by Chang et al. [9] to models with varying govern-
ing equations. Similarly, Lewis and Nash [10] implemented addi-
tive corrections in their multigrid optimization technique. Eldred, 
Giunta, and Collis [11] developed second-order additive, multi-
plicative, and hybrid corrections to improve the local rate of opti-
mization convergence using Hessian information approximated by 
finite-differences, BFGS, and Symmetric Rank 1 updates.

To extend the region of accuracy of local corrections, nearby 
data may also be included. Eldred, Giunta, and Collis [11] take 
a multipoint approach in generating hybrid corrections, satisfying 
the first-order consistency condition at both the current design 
and the prior design point. However, they note the multipoint 
technique is marginally effective as it is backward looking rather 
than forward looking in terms of the optimization search direc-
tion. Similarly, Gano, Renaud, and Sanders [12] select the nearest 
data as the secondary point. An alternative multipoint approach 
is taken by Fischer and Grandhi [13], in which a Bayesian update 
is utilized to estimate the best blend of additive and multiplica-
tive corrections. As a forward-looking approach, Bryson, Rumpfkeil, 
and Durscher [14,15] present a multifidelity optimization approach 
that leverages the concept of expected optimal point from quasi-
Newton optimization, making use of the polynomial models pre-
sented in this article. Incorporating information from more than 
two points, Fischer and Grandhi [13] perform a Bayesian update of 
the weights based on all data near the current design.

Global optimization and uncertainty quantification depend on 
global corrections to the lower-fidelity model. There are many ex-
amples of using kriging to model the discrepancies between dif-
ferent models globally or over large regions, often including a 
low-order multiplicative scaling across the design space [12,13,
16–19]. Notably, Han, Görtz, and Zimmermann [17] combined gra-
dient enhanced kriging with a generalized hybrid bridge function 
to take advantage of both multiple data sources and efficiently cal-
culated gradients. Adopting terminology from Peherstorfer, Willcox, 
and Gunzburger [20], these multi-step corrections are considered 
model adaptation as opposed to model fusion where a single high-
fidelity surrogate is derived from multiple data sources, such as in 
co-kriging. In Kennedy and O’Hagan [21], the different models are 
internally linked by a constant scaling factor determined as part of 
the co-kriging process in addition to the discrepancy function. In 
Qian and Wu [22] and Han, Zimmerman, and Görtz [23], the scal-
ing and discrepancy are both generalized to be Gaussian processes.

Fig. 1. Geometry of lambda wing vehicle.

Global multifidelity corrections to polynomial models are less 
common, and are frequently created in a multi-step adaptation. Ng 
and Eldred [24] present a method where separate polynomial ex-
pansions are developed for the low-fidelity data as well as additive 
and multiplicative corrections. The three surrogates are then com-
bined in a convex combination to approximate the high-fidelity 
response, selecting a weighting parameter to minimize the magni-
tude of the correction. Alternatively, Shah et al. [25] determine the 
least squares-optimal linear multiplicative and constant additive 
correction to the low-fidelity data. Then, a single surrogate of the 
high-fidelity response is created using only the transformed low-
fidelity data. Similarly, Palar, Tsuchiya, and Parks [26] use a regres-
sion procedure to find the least squares-optimal additive correction 
between fidelities, and later combine PCEs of the low-fidelity func-
tion and corrective term.

In this article, we present an all-at-once approach to generat-
ing multifidelity PCE’s with hybrid additive-multiplicative bridge 
functions of arbitrary order. The technique seeks to generate a 
surrogate of the high-fidelity model by fitting both high-fidelity 
data and low-fidelity data corrected on a global scale. The fitting 
process may be considered more like a fusion process than an 
adaptation in that all the data participate in a single model fit-
ting including determination of least-squares optimal additive and 
multiplicative corrections. The resulting corrections are comple-
mentary, eliminating the weighting parameter that must be de-
termined in other approaches in the literature. The multifidelity 
approach is further augmented by the addition of gradients for 
both the high and low fidelities following the approaches of Li et 
al. [27]; Hessians may also be included following Boopathy and 
Rumpfkeil [28]. Demonstrations are made using analytic test func-
tions ranging from two to one hundred dimensions, and on a 
three-dimensional test problem combining Cartesian Euler Compu-
tational Fluid Dynamics (CFD) with a panel aerodynamics method.

The aerodynamic application is the prediction of the lift coeffi-
cient for a tailless, lambda-wing vehicle illustrated in Fig. 1, which 
has been the subject of many studies at the Air Force Research 
Laboratory [29–32]. The lambda planform is selected to balance 
subsonic and supersonic performance. The outboard wing section 
increases subsonic performance by increasing aspect ratio, while 
the inboard section provides high speed performance. Flying a tail-
less vehicle, however, presents challenges in trim and stability, 
and accurate prediction of the aerodynamic forces and moments 
is critical. The accurate prediction of aerodynamic performance 
is further exacerbated by the fact that such a vehicle must both 
dwell in and fly through the transonic regime, for which mod-
eling is known to be difficult. Many design decisions driving or 
constraining performance under these conditions are made in the 
conceptual- and preliminary design stages based on lower-fidelity 
tools. High-fidelity aerodynamic simulation at every point in the 
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