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The paper presents a rotor–stator coupling method for analyzing unsteady flow field within multi-blade-
row turbomachines using a frequency domain method. The coupling method is called time and space 
mode decomposition and matching method. It is based upon coordinate transformation and Fourier 
transformation to extract relevant time and space modes represented by frequency of unsteadiness, nodal 
diameter and Fourier coefficients. Detailed procedures together with relevant formula are established 
to identify the matching time and space modes across an interface and calculate corresponding mode 
coefficients. The mode coefficients are then matched across an interface with the use of a one-
dimensional non-reflective implementation. To verify the correctness and effectiveness of the proposed 
interface treatment, a transonic compressor was used as a test case. The unsteady flow field within it 
was analyzed using a time domain time marching method to obtain the results as a reference. Then 
various frequency domain solutions with different resolution of unsteady frequencies were performed. 
Comparison of amplitude of different static pressure harmonics between frequency domain solutions and 
the reference time domain solution was made and discussed.

© 2017 Elsevier Masson SAS. All rights reserved.

1. Introduction

Flow field within turbomachines is inherently unsteady due to 
sources of blade row interaction and/or blade vibration. To assess 
blading aeroelasticity in terms of forced vibration and flutter, there 
is a need to analyze the unsteady flow field. This unsteady flow is 
quite often strongly, if not completely, periodic in time with the 
frequencies of unsteadiness being known a priori (e.g. blade pass-
ing frequency, vibration frequency and their multiples). Resolving 
the unsteady flow in time domain using time marching methods 
has been too costly in terms of CPU time and memory usage, 
particularly for routine designs, even with nowadays computing 
resources. To significantly reduce the time cost of analyzing the 
unsteady flow, a few frequency domain methods have been pro-
posed to make use of the time periodic feature of the flow field 
and the cyclically symmetric feature of the structure of turboma-
chines. These methods include the linear harmonic method [1], the 
nonlinear harmonic method [2,3], the harmonic balance method 
[4–7] and the time spectral method [8–10]. All these methods fea-
ture Fourier representation of the unsteady flow field and single 
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passage computational domain together with phase shift boundary 
condition at the geometrically periodic boundaries.

Turbomachines are quite often designed to have many blade 
rows with rotors and stators being arranged alternately. For ei-
ther forced response or flutter analysis, coupling adjacent blade 
rows in an analysis can make significant difference [11]. To ana-
lyze the unsteady flow in a multi-blade-row environment using a 
frequency domain method, a rotor–stator coupling method is an 
essential element. Though the earliest effort in applying frequency 
domain methods to computational domains consisting of multiple 
blade rows [3] started more than a decade ago, there has been 
continuous effort up to date in this direction [12–15,11,6,16,17]. 
The rotor–stator coupling method is vitally important for the ap-
plication of a frequency domain method to computational domains 
consisting of multiple blade rows, as it can slow down a solution 
process or even corrupt the solution if it is not properly formu-
lated.

So far all those rotor–stator coupling methods can be cate-
gorized into two groups: one is the sliding plane method based 
group [18,19,12,6,11,16] and the other is the Fourier transforma-
tion based group [3,13,14,17]. The sliding plane method has gained 
more popularity than the other method, as it is conceptually easier 
to understand. To use the sliding plane method, apart from search-
ing matching cells/points and interpolating solution, there is a 
need to reconstruct the time series of flow solution. If the number 
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of harmonics to be resolved in a domain is small, it is imperative 
to filter unwanted frequency content, otherwise those unresolved 
frequency content will defer the convergence, and even corrupt the 
solution leading to solution instability. For the filter operation, it is 
also necessary to reconstruct and interpolate solution at sufficient 
number of matching points/time instants, leading to extra time 
cost. If there are more than one fundamental frequency in a do-
main and their greatest common divisor is 1 (e.g. in a flutter anal-
ysis in a multi-blade-row environment), then the beating period 
can be very big and the required over-sampling can be prohibitive.

What one can find about the Fourier transformation based cou-
pling method from the open literature is that it involves two as-
pects: first it performs Fourier transformation to get the relevant 
Fourier coefficients, second those Fourier coefficients are matched 
across an interface [13]. Apparently the above information is far 
from being sufficient for any one interested to implement this ap-
proach. From an implementation point of view, one needs a much 
more detailed procedure addressing the following points:

1. What spatial/temporal modes to be matched across an inter-
face, and how to determine them

2. What are the formula for spatial and temporal Fourier trans-
formation to extract the spatial/temporal modes

3. How to achieve the matching of those Fourier coefficients in a 
solution process

For a complete Fourier transformation based coupling method, 
it also needs to provide theoretical basis for the above procedure. 
This paper aims to present a complete, concise and generic rotor–
stator coupling method based upon coordinate transformation and 
Fourier transformation together with theoretical derivation of rele-
vant formula.

2. Flow governing equations and harmonic balance method

The unsteady Reynolds averaged Navier–Stokes equations to-
gether with the Spalart–Allmaras turbulence model [20] in a cylin-
drical coordinate system has been used in the investigation. The 
equation system is not repeated here to save space and interested 
readers can refer to reference [21]. Solution of the equation system 
is obtained by using a cell-centered finite volume approach. Spatial 
discretization of the equation is achieved by the well known JST 
scheme [22] together with eigenvalue scaled numerical dissipation 
[23]. The time integration in pseudo time is achieved by a five-
stage Runge–Kutta method together with the LU-SGS method [24]
being used as a residual smoother. The time integration in physi-
cal time can be achieved either by the dual time stepping method 
or by a nonlinear frequency domain method. For the nonlinear fre-
quency domain method, solution instability due to time spectral 
source term stiffness is dealt with by implicitly accommodating 
the source term using block Jacobi method together with the LU-
SGS method [21]. A V-cycle multi-grid and local time step are also 
implemented in the code to speed up solution convergence.

In this investigation, the frequency domain method being used 
is the time spectral form harmonic balance method [4]. It is as-
sumed that the time dependent flow variables can be approxi-
mated using truncated temporal Fourier series,

Q (x, θ, r, t) = Q̄ (x, θ, r) +
n∑

i=1

[
Q A,i (x, θ, r) sinωit

+ Q B,i (x, θ, r) cosωit
]

(1)

where n is the number of frequencies being retained in an analy-
sis, ̄ denotes the time averaged quantity, Q A,i and Q B,i denote the 
Fourier coefficients for unsteadiness corresponding to the ith fre-

quency with the angular frequency of ωi . Q̄ , Q A,i and Q B,i are all 
functions of spatial coordinates only, and independent of time.

With Equation (1), the time derivative in an unsteady governing 
equation can be approximated by

∂ Q

∂t
=

n∑
i=1

(
Q A,icosωit − Q B,i sinωit

)
ωi (2)

This provides the chance to convert this time derivative term to 
a source term, transforming the original unsteady equation system 
to a quasi steady equation system.

There are 2n + 1 sets of unknowns for n harmonics on the right 
hand side of Equation (1). Hence at least 2n + 1 sets of equations 
are required to obtain the solutions. This is achieved by solving 
the equations at 2n + 1 time instants. The solution vector at 2n + 1
time instants (Q ) is related to the Fourier coefficients Q ∗ through 
the Fourier transform matrix.

Q = D Q ∗ (3)

where

Q =

⎡
⎢⎢⎣

Q (t1)

Q (t2)

...

Q (t2n+1)

⎤
⎥⎥⎦ (4)

D =
⎛
⎜⎝

1 sinω1t1 cosω1t1 ... sinωnt1 cosωnt1
1 sinω1t2 cosω1t2 ... sinωnt2 cosωnt2
...
1 sinω1t2n+1 cosω1t2n+1 ... sinωnt2n+1 cosωnt2n+1

⎞
⎟⎠

(5)

Q ∗ =

⎡
⎢⎢⎢⎢⎢⎢⎣

Q̄
Q A,1
Q B,1
...

Q A,n

Q B,n

⎤
⎥⎥⎥⎥⎥⎥⎦

(6)

Q ∗ can be obtained from Q via the inverse transform of Equa-
tion (3),

Q ∗ = D−1 Q (7)

With Equation (3) and Equation (7), Equation (2) can be de-
noted as follows

∂ Q

∂t
= Dt Q ∗ = Dt D−1 Q = E Q (8)

Dt =⎛
⎝

0 ω1cosω1t1 −ω1sinω1t1 ... ωncosωnt1 −ωnsinωnt1
0 ω1cosω1t2 −ω1sinω1t2 ... ωncosωnt2 −ωnsinωnt2
...

0 ω1cosω1t2n+1 −ω1sinω1t2n+1 ... ωncosωnt2n+1 −ωnsinωnt2n+1

⎞
⎠

(9)

For implementation, D is calculated beforehand and inversed 
numerically before it is multiplied with Dt to get the matrix E . 
The matrix E is therefore stored for use in a solution process to 
evaluate the time spectral source term.

For situations with one fundamental frequency, the 2n + 1 time 
instants are chosen to be equally spaced over the time period cor-
responding to the fundamental frequency. For situations with more 
than one fundamental frequency, extra care is needed when time 
instants are chosen [6,25]. The principle is that the time instants 
are chosen in such a way that the condition number of the Fourier 
transform matrix D is minimized. This can be achieved either by 
optimization (this is done once at the start of a solution) or the 
Gram–Schmidt process together with over-sampling.
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