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In view of the limitations of the existing libration-point satellite navigation systems in cislunar space, 
this paper replaces satellites with solar sails to construct a cislunar navigation constellation and is 
devoted to the trajectory optimization of solar sails to minimize the lightness number control. The 
Artificial Lagrangian Points (ALPs) yielded by solar sail in the Sun–Earth+Moon system benefit from the 
advantages of numberless equilibria and out-of-plane displacement, when compared with the classical 
Lagrangian points. Limited to the manufacturing of sail film in practice, the candidate constellation 
architecture in the shape of a cube is constructed based on the optimization of the average lightness 
number required at ALPs. Considering the lunar gravity, the Hamiltonian-structure-preserving (HSP) 
controller achieved by changing the sail’s attitude and lightness number is developed to stabilize the 
sails’ trajectories near the ALPs. Moreover, an optimal quasi-periodic trajectory with minimum lightness 
number control is searched for through differential evolution algorithm evolving the controller gains 
and initial states of orbits. There are three important contributions of the trajectory optimization for a 
sail in the cislunar navigation constellation: firstly, the large amounts of ALPs break the restrictions on 
the number and plane of the five classical Lagrangian equilibrium solutions to enlarge the selection of 
constellations; secondly, the station keeping tool HSP controller powerfully ensures the boundedness of 
the ALP’s trajectory; thirdly, using the optimization algorithm to generate ALP orbits effectively avoids 
the time consumption of differential correction, which is more convenient and general for the natural 
trajectory design of ALPs.

© 2017 Elsevier Masson SAS. All rights reserved.

1. Introduction

As the only natural satellite of the Earth, the Moon serves as 
the starting point for deep space exploration activities. Russia in-
tends to establish a permanent base on the Moon before 2030; 
China [1] and United States [2] both identified the observation 
and survey of the lunar far side as top priorities in their decadal 
disciplinary development strategy in space science. It could be ex-
pected that the data and material exchange between the Earth and 
Moon will experience the development peak in the next few years. 
However, limitations of the ground-based navigation antennas, and 
the defects present in other infrastructure, such as the orbit de-
termination delay and ground management pressure in the flight 
control system of the spacecraft-ground loop, could likely cause 
future large-scale round trips between the Earth and Moon to fail. 
Thus, if a cislunar navigation system similar to GPS can be con-
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structed, it will make the autonomous flight possible and trigger a 
positive cycle of the cislunar exchange and communication.

Motivated by this, the study of cislunar navigation systems has 
created great worldwide interest among the astronautic organiza-
tions. Benefiting from the special location and mechanical proper-
ties, libration points in the circular restricted three-body problem 
(CR3BP) [3], i.e., the classical Lagrangian points L1, L2, L3, L4 and 
L5, have been considered as an important method and possible so-
lution to the construction of the cislunar navigation system. The 
concept of libration-point satellites for lunar communications was 
first proposed by Farquhar [4], who used only two satellites—one 
stationed at the interior libration point L1, and the other follow-
ing a trajectory about the exterior libration point L2 to maintain 
line-of-sight contact. After that, a diverse range of the Earth–Moon 
libration-point satellite constellations have been designed such as: 
a triangle configuration composed of L3, L4 and L5 [5], a con-
stellation of four satellites displaced over L3, L4, L5 and L2-Halo 
orbit [6], an Earth–Moon L2, L4, L5 three-satellite constellation and 
an L1, L2, L4, L5 four-satellite constellation [7]. These researches 
above reveal the superiority and potential of libration points’ ap-
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plications in cislunar navigation to a certain degree. However, 
there are also two primary limitations of the existing Earth–Moon 
libration-point navigation architectures: firstly, the number of clas-
sical Lagrangian points (CLPs) in the cislunar space is limited to 
five. Even though the satellites can be placed on the Halo orbits 
nearby, the range of the motion is restricted; secondly, all the 
satellites in navigation systems stationed at the Earth–Moon CLPs 
are confined to the same plane, which weakens the navigation per-
formance to some extent.

Inspired by the ground-based global navigation satellite systems 
(e.g. GPS, GLONASS, BeiDou, etc.) [8], this paper considers the cis-
lunar navigation constellation composed by displaced solar sails, in 
which artificial Lagrangian points of the sail-CR3BP are yielded to 
construct the solar sail constellation dispersedly. Influenced by the 
gravity from the Moon, solar sails can neither be stationary at ar-
tificial Lagrangian points, nor move in bounded orbits nearby, thus 
a controller achieved by changing the sail’s lightness number and 
attitude is implemented to stabilize the sails’ motion. However, 
due to the complicated deployment and folding process of solar 
sail membrane, the accessible variation of sail’s lightness number 
in the mechanism is quite small. In the solar sail’s restricted N-
body problem, the natural periodic or quasi-periodic orbit is the 
one generated with the minimum change of lightness number, in-
stead of the special solution of CR3BP as a halo orbit [9,10]. For 
instance, Waters and McInnes [11] obtained the natural trajecto-
ries with zero change of lightness number in the Sun–Earth–sail 
CR3BP. However, under the extra lunar gravitation considered in 
this paper, there could be no periodic or quasi-periodic trajectory 
generated without lightness number changing. Based on this fact, 
this paper is devoted to the trajectory optimization for solar sail in 
cislunar navigation constellation with the minimal lightness num-
ber control.

The remainder of this paper is organized as follows: In Sec-
tion 2, the dynamical model is established in the Sun–Earth+Moon 
rotating reference frame, then the artificial Lagrangian points of 
the sail-CR3BP are yielded and demonstrated. Section 3 constructs 
a simple candidate constellation architecture to select eight ar-
tificial Lagrangian points for sail’s station keeping based on the 
minimum average lightness number required. Section 4 rewrites 
the dynamical model of solar sail by adding the lunar gravity and 
control force to design the bounded nominal trajectories of nav-
igated sails. The powerful tool Hamiltonian-structure-preserving 
controller achieved by changing the sail’s attitude and lightness 
number is developed to guarantee the boundedness of sails’ tra-
jectory. Then the parameters of controller and initial states of 
trajectory are optimized by the differential evolution algorithm to 
minimize the lightness number control required. The final search 
results of optimization algorithm are demonstrated, which show 
that all the lightness number’s variation for the sails’ trajectories 
design in navigation constellation can be easily accepted in the 
mechanism.

2. Sail constellation around the artificial Lagrangian points

2.1. Artificial Lagrangian points by solar sail

In the circular restricted three-body problem, there are five 
well-known equilibrium solutions: L1, L2, L3, L4 and L5 [3]. Since 
the radiation pressure exerted on the infinitesimal mass has been 
considered in the restricted three-body problem, new additional 
equilibria are generated by solar sail for a wider application. Partic-
ularly, for the sail-CR3BP, solar sail can regulate the direction and 
magnitude of solar radiation pressure force by orienting the atti-
tude and changing the lightness number respectively. Therefore, a 
continuum of new equilibria parameterized by the solar sail light-

Fig. 1. Solar sail circular restricted three-body problem.

ness number and attitude can be generated, named the artificial 
Lagrangian points (ALPs).

In this paper, the ideal, perfectly reflecting solar sail is consid-
ered, which means the sail is assumed regardless of the optical 
degradation and deformation. Except for the gravitational forces 
and the solar radiation pressure force, many disturbing forces, such 
as force caused by the solar wind and the finiteness of the solar 
disk are neglected for simplification [12].

The bi-circular model is established where the Sun, the Earth–
Moon system and the sail consist of the CR3BP. Supposing that the 
Sun and Earth are revolving in circular orbits around their center of 
mass and the Moon is moving in a circular orbit around the Earth. 
To simplify the equations, the units of time, length, and mass are 
chosen so that the angular velocity of rotation of the Sun and the 
Earth–Moon system around their barycenter, the distance between 
the primary masses, the sum of the two primary masses, and the 
gravitational constant are all taken to be scaled. With these units 
normalized, the mass of the Earth–Moon system is defined as μ, 
then the mass of the Sun is 1 − μ. The Sun–Earth+Moon rotat-
ing reference frame is established as shown in Fig. 1, where m1
denotes the Sun, and m2 denotes the Earth–Moon system. The ori-
gin is taken at the barycenter of the Sun–Earth+Moon system, the 
X-axis points along the line from the Sun to the barycenter of 
the Earth–Moon system, the Z-axis is the axis of rotation, and the 
Y-axis follows the right-handed rule. It is noted that the two pri-
mary masses in this rotating reference frame have fixed positions 
while the Moon is rotating around the Earth. The solar sail posi-
tion vectors are defined with respect to the origin as r = (x, y, z)T , 
to the Sun as r1 = (x + μ, y, z)T , to the Earth–Moon barycenter as 
r2 = (x − 1 + μ, y, z), to the Earth as re = (x − xe, y − ye, z − ze)

and to the Moon as rm = (x − xm, y − ym, z − zm) where (xe, ye, ze)

and (xm, ym, zm) are respectively the coordinates of the Earth and 
the Moon.

Then the dynamics of solar sail in rotating reference frame can 
be written as

r̈ + 2ω × ṙ + ∇U = a (1)

where ω is the normalized angular velocity of rotation, a is the 
solar radiation pressure acceleration and U is the three-body po-
tential function, defined by McInnes [13] as:

U = −
[

1

2

(
x2 + y2) + 1 − μ

r1
+ μ

r2

]
(2)

a = β
1 − μ

r2
1

(r̂1 · n)2n, (3)

where n is the normal vector of solar sail deviated from the sun-
line and β is the lightness number parameter, defined as the ratio 
of the solar radiation pressure acceleration to the solar gravita-
tional acceleration.



Download English Version:

https://daneshyari.com/en/article/5472635

Download Persian Version:

https://daneshyari.com/article/5472635

Daneshyari.com

https://daneshyari.com/en/article/5472635
https://daneshyari.com/article/5472635
https://daneshyari.com

