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In this work, we conducted a coupled dynamic loads analysis (CDLA) of satellites with an enhanced 
Craig–Bampton (ECB) approach to predict maximum response (acceleration, displacement, and stress). 
The satellite was subjected to a relatively high frequency launch vehicle (LV) interface load (20–50 Hz) 
when it was launched by multiple satellite launcher or experienced the combustion instability caused 
by LV instead of a typical low frequency LV interface load (0–10 Hz). To minimize the error caused by 
mode truncation, ECB-like formulation, which considers the effect of residual modes, is employed and 
computes the maximum response of the given dynamic system. By using this method, we found that the 
response by the ECB model is more accurate and efficient over the classical Craig–Bampton (CB) model 
due to the enhanced transformation matrix from being subjected to an unexpected high frequency LV 
load. To demonstrate this performance, we solved several benchmark problems associated with CDLA.

© 2017 Elsevier Masson SAS. All rights reserved.

1. Introduction

To investigate the structural safety of spacecraft (SC) while ex-
periencing extreme dynamic loads from critical launch events such 
as lift-off, wind-gust, and stage separation, couple-dynamic load 
analysis (CDLA), also termed coupled loads analysis (CLA), has been 
routinely used in many space agencies and industries [1,2]. To 
tackle this problem, component mode synthesis (CMS) has been 
widely used in structural vibration society [3–7]. Recently, Sabatini 
et al. introduce the advantage of the multibody dynamics simu-
lation for CDLA [8] and, in particular, experimental dynamic sub-
structuring that is to combine analytical and experimental models 
based on the CMS methods have been mainly issued [9–12].

In conventional CDLA, SC finite element (FE) models composed 
of many degrees of freedom are reduced to the SC interface nodes 
and several output nodes by using the Craig–Bampton (CB) method 
[3] that is the most well known CMS method. Then, these models 
are delivered to the launch vehicle (LV) company and the LV FE 
model is assembled them for the transient simulation at several 
critical launch events to find out the maximum response.
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In the case of small LVs, especially for low earth-orbit (LEO) 
launches less than 1000 km, the coupling effect between SC and 
LV is negligible because the minimum lateral natural frequency of 
SC needs to be sufficiently higher than the LV’s natural frequency 
(<10 Hz). However, in the case of large LVs, which have the ca-
pability to shoot heavy payloads farther than LEO, they usually 
employ solid boosters which subject spacecraft to a frequency ac-
celeration higher than 20 Hz due to the combustion characteristics. 
Furthermore, they provide a launch-service for satellites to LEO in 
the form of dual or multiple launches, but this kind of launch 
service generates another high frequency vibration source due to 
the structural interaction between the payload satellites that was 
quite unexpected and has never described in launch-vehicle man-
ual. There was an unexpected vibration input source of around 
28 Hz [13], as shown in Fig. 1. In addition, pogo oscillation (see 
Fig. 2), a thrust axis vibration in the range of 5 to 50 Hz depend-
ing on the propulsion system caused by the combustion instability 
of rocket LV with the liquid engine, is also applied to the space-
craft [14,15].

In order to accurately predict the maximum response of SC at 
the launch events under such circumstances, a more sophisticated 
reduced model is needed because the conventional CB model has 
some errors as the exciting frequency of input source becomes 
higher. The main source of the error is due to ignoring the con-
tribution of a high frequency structural response. In other words, 
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Fig. 1. High structural mode due to multiple SC launches.

Fig. 2. High frequency SC acceleration by combustion instability (pogo oscillation).

when we construct a CB model for CDLA, we carefully have to 
compute the eigenfrequency over the frequency range of interest 
with a proper mode selection technique. Such truncation errors in 
the CB model happen when the other modes located outside of the 
frequency domain of interest may also have significant contribu-
tions. Namely, these modes have high modal participation factors 
or these modes are locally very relevant, as in the case of flexural 
appendages.

In order to compensate for such an effect, there have been sev-
eral approaches utilized [16–18]. Among those, the MA (modal 
acceleration) method has been frequently employed to compensate 
for modal truncation errors. In this method, the quasi-static contri-
bution of the non-retained modes whose eigenfrequency is located 
outside the excitation frequencies is computed. To improve the ac-
curacy of MA further, the MTA (modal truncation augmentation) 
method has also been proposed. This method tries to compensate 
the error caused by the truncation of residual modes. Thus, it was 
chosen for many commercial software such as NASTRAN [19] by 
adding extra orthogonal mode shape vector, termed the residual 
vector. By compensating for this term, the error arising from the 
mode truncation is efficiently diminished. However, it is known 
that such artificial mode augmentation slightly violates the equa-
tion of the motion of dynamics systems [16,18]. In other words, 
it can increase the accuracy of frequency response functions and 

transient responses, but is theoretically less rigorous, even gener-
ating ‘mass-less mode’ [19].

Recently, a more simple and accurate approach called ECB (en-
hanced CB) method was proposed by Kim and Lee [20]. In this 
method, high-frequency modal effects can be considered by the 
residual flexibility within the transformation matrix [21,22]. Note 
that this method does not use any artificial terms, like MTA, thus 
making the method more complete in a theoretical sense. There-
fore, users do not need to set up the parameters, such as the 
number of basis, like the conventional MTA method. Furthermore, 
its procedure is almost equivalent to CB, except for the additional 
term of high frequency contributions in the transformation matrix 
only. Thus, it turns out that ECB offers a more precise reduced-
order modeling in contrast to CB [23].

The goal of this work is to provide an accurate approach for 
CDLA with ECB-like formulation. The outline of the paper is as fol-
lows. In Section 2, we explain how to construct an ECB model 
in contrast to CB. This is followed by the formulation of CDLA 
along with the output transformation matrix (OTM). Next, in Sec-
tion 3, to demonstrate the efficiency and accuracy of the proposed 
scheme, we solve a benchmark problem of a rectangular plate 
with two fixed edges to investigate its characteristics in detail by 
comparing the performance with the CB model. In Section 4, we 
demonstrate the robustness of the proposed scheme by conduct-
ing the CLA of the satellite with high frequency LV interface loads. 
Finally, we conclude the paper with closing remarks in Section 5.

2. Enhanced Craig–Bampton method and coupled dynamics 
loads analysis

2.1. Classical and enhanced CB formulations

We here introduce the classical and enhanced CB formulations 
[3,20]. The equations of the motion of linear dynamic systems ne-
glecting the damping effect can be written as

Mg üg + Kgug = fg, (1)

Mg =
[

Mb Mc

MT
c ML

]
, Kg =

[
Kb Kc

KT
c KL

]
,

ug =
{

ub
uL

}
, fg =

{
fb
fL

}
, (2)

where M and K are the mass and stiffness matrices, and u and 
f are the displacement and force vectors, respectively. The sub-
script g indicates the global structure. The other subscripts L, b, 
and c indicate internal, boundary interface and coupling matrices, 
respectively. Its eigensolution can be computed from

Kgψ i = γ iMgψ i, i = 1,2, . . . , Ng, (3)

where γ i and ψ i are the i-th eigenvalue and eigenvector of the 
global structure, respectively, and Ng is the number of DOFs in 
the global structure. Note that γ i and ψ i are the square of the 
i-th natural frequency (ω2

i ) and the corresponding mode in the 
structural dynamics, respectively.

In the classical CB approach [3], the global displacement vector 
ug can be defined as

ug =
{

ub
uL

}
= T

{
ub
q

}
, T =

[
Ib 0
�R �L

]
,

�R = K−1
L KT

C , �L = [
�d �r

]
, q =

{
qd
qr

}
, (4)

in which q is the generalized coordinate of the internal degrees 
of freedom (DOFs), and Ib is the identity matrix of the interface 
boundary DOFs. �R and �L are the matrices of the interface con-
straints and fixed interface normal modes, respectively. Then, �L
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