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The paper investigates the trajectory planning and control of autonomous spacecraft rendezvous in the 
orbital plane with line-of-sight dynamics. The control problem, based on nonlinear model predictive 
control, is formulated in terms of line-of-sight range and azimuth angle. The state feedback with 
measurement uncertainties is introduced to form a closed-loop optimal control problem by integration 
of receding horizon strategy. Furthermore, the control input increment instead of total control input 
is considered in the cost function to generate a smooth transient response. The formulated nonlinear 
optimal control problem is then transformed into convex quadratic programming problems over the 
predictive horizon, leading to a computationally efficient algorithm implementable for spacecraft. The 
numerical results show that the newly proposed line-of-sight nonlinear model predictive control scheme 
is able to effectively generate optimized approach trajectories with satisfactory control accuracy and the 
proposed method is insensitive to the measurement uncertainties.

© 2017 Elsevier Masson SAS. All rights reserved.

1. Introduction

The increasing population of space debris, such as non-
functional satellites or spent upper stages of rocket, poses seri-
ous threats to space flight missions [1,2]. To address the threats, 
active space debris removal has emerged as an appealing strat-
egy for the sustainable use of outer space [3,4]. In such missions, 
the chaser spacecraft (chaser) has to track the motion of space de-
bris, or a non-cooperative target in general, and then approaches 
and rendezvouses with the target. Challenges arise in the trajec-
tory planning and tracking control of the chaser, where the chaser 
is usually required to perform complicated and skewed maneuvers 
for rapid tracking and station keeping, especially in the proximity 
operation, to deal with the non-cooperative target.

Many control methodologies and/or strategies have been devot-
ed to generate optimal approaching trajectories to autonomously 
transfer from one elliptical orbit to another with various objec-
tives, such as, efficient fuel consumption [5], shortest approaching 
time [6], high control accuracy or robustness [7], subject to opera-
tional constraints. Notably, Nonlinear Optimal Control (NOC) has 
been recognized as one of the most attractive methods to deal 
with the constrained optimization problems since it optimizes a 
specific cost function while satisfying the nonlinear equality and/or 
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inequality constraints [8,9]. However, to obtain a feasible solution 
to the closed-loop NOC in a fast manner is challenging, even for 
an unconstrained case [10]. Alternatively, Nonlinear Model Predic-
tive Control (NMPC), which is based on receding horizon strategy 
(RHS) and re-planning of optimal trajectory in real time by solv-
ing the NOC at each sampling instant [11,12], has been proved as 
an effective method [13–16]. The resulting NOC problem can be 
further reduced to a quadratic programming (QP) problem that is 
computationally affordable for computers on-board spacecraft.

Autonomous rendezvous with a target in near-field generally 
employs laser imaging detection and ranging system and advance 
video guidance system for relative navigation in terms of the rela-
tive distance and the Line-Of-Sight (LOS) angles with respect to the 
target. The aforementioned approaches were based on the Local-
Vertical Local-Horizontal (LVLH) formulation [5–7], including the 
LVLH based NMPC approach [13–16]. As a result, the relative nav-
igation information has to be transformed from the LOS frame to 
the LVLH frame. The extra transformation between the LOS and 
LVLH frames complicates the derivation of guidance control and 
adds extra computational efforts for on-board computers. To re-
duce the computational requirement for the on-board computers, 
LOS based autonomous rendezvous were developed to employ the 
navigation directly [17,18]. The control law was developed based 
on the phase plane analysis. No attempt has been made to the 
LOS based NMPC in autonomous spacecraft rendezvous, to the best 
knowledge of authors.
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Nomenclature

a semi-major axis of the elliptical orbit
A(X) state-dependent system matrix
Ak discretized system matrix at time step k
B control input matrix
Bk discretized control matrix at time step k
e eccentricity of the elliptical orbit
f true anomaly of the elliptical orbit
Fρ, Fθ control force components along the LOS range and az-

imuth angle directions
mc mass of the chaser
Nc, N numbers of control horizon and predictive horizon
P , Q weight matrices on the control correction and control 

error
RT distance from the center of the Earth to the target

Ts sampling time interval
U max maximum control force
U control input vector
x, y coordinates of the relative distance vector under or-

bital frame
Xd desired state vector
�U k incremental control variable
δρ, δθ measurement errors of LOS range and azimuth angle
θ, θd azimuth angle and desired azimuth angle
ρ,ρd LOS range and desired LOS range
ρS safety distance from the target
σρ,σθ standard deviations of Gaussian distributions in terms 

of LOS range and azimuth angle
ω first order time derivative of the true anomaly

Fig. 1. Schematic of the LOS frame.

In the current work, the autonomous rendezvous is formulated 
in the LOS frame to directly use the relative navigation informa-
tion. This intuitive description of the trajectory planning will result 
in concise formulation of the system dynamics and the controller 
design, especially for autonomous rendezvous with a passive non-
cooperative target.

2. Line-of-sight formulation of spacecraft dynamics

Consider a chaser approaching a target in the orbital plane of 
an elliptical orbit, as shown in Fig. 1. To focus on the fundamen-
tals of the LOS based NMPC, the current work is limited to the 
in-plane rendezvous with the target. The orbital frame, shown as 
O o − xo yo zo in Fig. 1, is defined with its origin at the Center of 
Mass (CM) of the target, where the yo-axis is along the orbital 
radius of the target, the xo-axis lies in orbital plane and is per-
pendicular to the yo-axis, and the zo-axis is normal to the orbital 
plane to complete a right-hand system. The LOS frame is formed 
by the range ρ and azimuth angle θ with its origin at the CM 
of the target, where the azimuth angle θ is measured from the 
xo-axis in the orbital plane as shown in Fig. 1.

Accordingly, the equations of motion of the chaser in the LOS 
frame is expressed as per [19],

ρ̈ − ρθ̇2 + 2ωρθ̇ +
[(

1 − 3 sin2 θ
) μ

R3
T

− ω2
]
ρ = Fρ

mc
(1a)

ρθ̈ + 2ρ̇θ̇ − 2ωρ̇ −
(
ω̇ + 3

μ

R3
T

sin θ cos θ

)
ρ = Fθ

mc
(1b)

where RT = a(1 − e2)/(1 + e cos f ) is the distance from the cen-
ter of the Earth to the target, f denotes the true anomaly, e is 
the eccentricity, a is the semi-major axis of the target, ω = δ̇ =√

μa(1 − e2)/R2
T and ω̇ = −2μe sin f /R3

T are the first and second 
order time derivatives of the true anomaly respectively, μ is the 
gravitational constant of the Earth, mc is the mass of the chaser, 
and Fρ and Fθ are the force components in the ρ and θ direc-
tions of the LOS frame. The detailed derivation of Eq. (1) is given 
in Appendix.

Introduce the new state vector X = {x1, x2, x3, x4}T with x1 = ρ , 
x2 = θ , x3 = ρ̇ and x4 = ρθ̇ . Then, Eq. (1) is reduced to a set of 
first-order differential equations, such that,

Ẋ(t) = A(X)X(t) + BU (t) (2)

A(X) =

⎡
⎢⎢⎢⎢⎢⎣

0 0 1 0

0 0 0 1
x1

ω2 − μ

R3
T
(1 − 3 sin2 x2) 0 0 x4

x1
− 2ω

ω̇ + 3 μ

R3
T

sin x2 cos x2 0 2(ω − x4
x1

) 0

⎤
⎥⎥⎥⎥⎥⎦

and B =

⎡
⎢⎢⎣

0 0
0 0
1 0
0 1

⎤
⎥⎥⎦ (3)

where A(X) ∈ �4×4 and B ∈ �4×2 are the state-dependent sys-
tem matrix and control input matrix, respectively, and U =
{Fx1 , Fx2 }T /mc is the control input. It should be noted that the 
state x1 = ρ will never approach to zero in practice because the 
target has finite dimensions.

The control objective of the trajectory planning for an au-
tonomous spacecraft rendezvous is to approach the target with 
a desired state, Xd = {x1d, x2d, 0, 0}T , smoothly to prevent sudden 
accelerations or decelerations of the chaser.

3. Nonlinear model predictive control

The control objective inevitably leads to an optimal control 
problem subject to constraint of thrust magnitude. The NMPC, also 
known as the Nonlinear Receding Horizon Control (NRHC), has 
been widely used to solve the constrained optimal control prob-
lem, due to its advantage of online generation of a set of feed-
back control commands by iteratively solving an open-loop NOC 
problem at each sampling instant. The receding horizon process is 
repeated by shifting the time one-step forward each time [20]. Ac-
cordingly, the optimal control problem of the trajectory planning 
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