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Reducing the burden of the remaining actuators through decreasing the performance gracefully is an 
important field in active fault tolerant control. According to the literature, two important points have 
been identified in the works considering graceful performance degradation: 1) using single-objective 
optimization, 2) assuming an engineering insight into the performance of the faulty system. This paper 
has two contributions: First, it is shown that in some cases, single-objective optimization may not be 
able to provide a satisfactory solution for the problem. Second, a new systematic and general method 
is proposed to remove the need for the engineering insight. The proposed method is based on multi-
objective optimization. Attitude tracking of a faulty spacecraft is considered as a case study. Simulation 
results show the advantages of the proposed methodology.

© 2017 Elsevier Masson SAS. All rights reserved.

1. Introduction

Active fault tolerant control (AFTC) is an important research 
area in automatic control from theoretic and practical points of 
view. The essential components of this type of controller are fault 
detection and diagnosis (FDD), reconfigurable controller and a re-
configuration mechanism [1,2]. Almost an uncountable number of 
papers, books, and reports have considered AFTC. Among the ref-
erences, [1] has prepared a comprehensive study and literature 
review about this subject. Spacecraft attitude fault tolerant control 
has been considered deeply in the literature. Among the various 
papers, [3] and [4] are two recent studies that have considered 
this problem. Ref. [5] is a recently published review paper that has 
considered the FTC literature in spacecraft attitude control prob-
lem.

Reference trajectory management (RTM) is one of the compo-
nents of general AFTC structure [1]. The main responsibility of RTM 
is to adjust/modify the reference trajectories to make the faulty 
system stable while preserving the pre-fault performance as much 
as possible [6]. There are several papers that have studied the ef-
fects of RTM on the performance and stability of the post-fault 
system ([7–9] and [10]). According to these works, RTM has been 
able to deal with the actuator faults/failures efficiently.

* Corresponding author.
E-mail address: aalikhani@ari.ac.ir (A. Alikhani).

Graceful performance degradation (GPD) is a methodology 
based on accepting some performance degradation in favor of ful-
filling the mission objectives. This definition was introduced for 
the first time by [11] and then extended by [12–17] and finally, 
[18].

References [11–14] and [15] have assumed an engineering in-
sight into the performance of the faulty system. Ref. [16] has not 
considered the burden of actuators in their problem. A quadratic 
cost function has been defined to optimize the performance of the 
controller, by forcing the post-fault system to track the nominal 
(fault-free) trajectories. Performance degradation and actuator sat-
uration have been considered simultaneously by [17]. A variable 
(degradation factor) has been introduced to model performance 
degradation. Constrained optimization is then used to find this 
variable. Zhou et al. [18] have reduced the conservatism of this 
method by considering a matrix of degradation factors.

A review of the previous works in the GPD field shows two 
important points: First, utilizing single-objective optimization and 
second, assuming an engineering insight into the performance of 
the faulty system.

This paper has two contributions: First, it is shown that single-
objective optimization may fail to provide a desirable solution for 
the GPD problem. The situation gets worse when there is not 
an engineering insight into the performance of the faulty system, 
which is often the case for multiple faults. Second, a general and 
systematic procedure is proposed to implement the GPD concept 
on a wide range of systems. This technique annihilates the need 
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Nomenclature

q = [q0,q1,q2,q3] quaternion vector
ω = [ω1,ω2,ω3] angular velocity vector . . . . . . . . . . . . . . . . . . rad/s
(u′

1, u′
2, u′

3) normalized control inputs . . . . . . . . . . . . . . . . . . . . . . s−2

(I1, I2, I3) principal moments of inertia . . . . . . . . . . . . . . . . . . kg m2

(u1, u2, u3) control moments acting on the 
spacecraft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg m2 s−2

tfault fault occurrence time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s
ts settling time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s
J∗ optimal solution in the Pareto optimal set

r = [φ, θ,ψ] Euler angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . rad
ξ vector of design variables (decision variables)
PM vector of performance measure (objective functions)
λ weighting coefficient vector
α contractive coefficient vector
tfinal final time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s
ns number of times that the actuators saturate
Tr thrust force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg m s−2

for an engineering insight into the performance of the faulty sys-
tem.

In order to demonstrate the capabilities of the proposed ap-
proach, attitude tracking of a rigid spacecraft subject to multiple 
actuator faults will be considered as the case study. Three different 
scenarios of randomly generated faults will be taken into account. 
The advantages of the proposed method will be demonstrated, and 
it will be shown that single-objective optimization may fail to pro-
vide a reasonable solution.

This paper consists of the following sections: Section 2 presents 
general preliminaries. Spacecraft dynamics and control as well as, 
single and multi-objective optimization are the topics of this sec-
tion. Sections 3 and 4 discuss the RTM structure and stability 
analysis, respectively. Section 5 presents the main idea of this pa-
per. Finally, the proposed method is used to design a GPD based 
AFTC for the attitude tracking of a rigid body spacecraft (sec-
tion 6).

2. Preliminaries

2.1. Spacecraft dynamics and control

The rigid spacecraft rotational motion in the principal coordi-
nate system is governed by the following equations [19]:

q̇0 = 0.5(−ω1q1 − ω2q2 − ω3q3)

q̇1 = 0.5(ω1q0 + ω3q2 − ω2q3)

q̇2 = 0.5(ω2q0 − ω3q1 + ω1q3)

q̇3 = 0.5(ω3q0 + ω2q1 − ω1q2)

ω̇1 =
(

I2 − I3

I1

)
ω2ω3 + u′

1

ω̇2 =
(

I3 − I1

I2

)
ω1ω3 + u′

2

ω̇3 =
(

I1 − I2

I3

)
ω1ω2 + u′

3

The relation between control torques and inputs are given by 
Eqs. (1), (2) and (3):

u′
1 = u1/I1 (1)

u′
2 = u2/I2 (2)

u′
3 = u3/I3 (3)

The upper and lower bounds of the control inputs are restricted 
according to the following saturation function:

sat(ui) =
⎧⎨
⎩

ui if − umax ≤ ui ≤ umax
umax if ui > umax
−umax if ui < −umax

The following relation always exists between quaternions [19]:

q2
0 + q2

1 + q2
2 + q2

3 = 1

The advantage of constraint equation is that for three known 
elements of the quaternion vector, the other element can be deter-
mined. This also leads to a less complicated controller design, since 
the number of controlled outputs becomes three (instead of four) 
and therefore, the number of inputs and outputs become equal.

The following vector is considered as the output vector:

y = [q1 q2 q3]T

Clearly, the second time derivative of this vector contains 
the control inputs. Consequently, the total relative degree be-
comes 2 + 2 + 2 = 6, which is equal to the number of states 
([q1, q2, q3, ω1, ω2, ω3]). Therefore, no internal dynamics exists, 
and input–output linearization can be used easily [20].

Obtaining the second time derivative of the output vector will 
result in the following equations:

q̈1 = −1

4
q1

3∑
i=1

ω2
i + 1

2
(G1q0ω2ω3 − G2q3ω1ω3 + G3q2ω1ω2)

+ 1

2

(
q0u′

1 − q3u′
2 + q2u′

3

)

q̈2 = −1

4
q2

3∑
i=1

ω2
i + 1

2
(G1q3ω2ω3 + G2q0ω1ω3 − G3q1ω1ω2)

+ 1

2

(
q3u′

1 + q0u′
2 − q1u′

3

)

q̈3 = −1

4
q3

3∑
i=1

ω2
i + 1

2
(−G1q2ω2ω3 + G2q1ω1ω3 + G3q0ω1ω2)

+ 1

2

(−q2u′
1 + q1u′

2 + q0u′
3

)
where:

G1 = (I2 − I3)/I1, G2 = (I3 − I1)/I2 and G3 = (I1 − I2)/I3.

These equations are in a suitable format. Therefore, feedback 
linearization can be easily employed to transform them into the 
following linear time-invariant (LTI) form:

q̈1 = u′′
1



Download English Version:

https://daneshyari.com/en/article/5472756

Download Persian Version:

https://daneshyari.com/article/5472756

Daneshyari.com

https://daneshyari.com/en/article/5472756
https://daneshyari.com/article/5472756
https://daneshyari.com

