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Attitude estimation plays a major role in the autonomy of unmanned aerial vehicles and requires 
fusion of different sensor measurements. This paper describes an adaptive estimation scheme in which 
the weight parameter for the complementary filter (CF) is varied over time. The adaptive mechanism 
proposed here is inspired from the multiple model adaptive estimation (MMAE) scheme used for varying 
noise parameters in the Kalman filter structure. In this paper, linear complementary filters are used as 
elementary blocks in MMAE structure whose weights are modified probabilistically to obtain an accurate 
orientation estimate. It avoids the problem of manual selection of weight factor for complementary filter 
and provides a robust orientation estimate against varying system dynamics. The proposed MMAE based 
adaptive CF scheme is modular in nature and is dependent on the residual error between estimated and 
measured orientation angle. It is applied on the real world datasets logged from inertial sensors and the 
performance of MMAE based CF structure is found to work promisingly as compared to the non-linear 
complementary filter versions and the extended Kalman filter framework.

© 2017 Elsevier Masson SAS. All rights reserved.

1. Introduction

Attitude estimation is one of the most important aspects re-
quired for the guidance and control of any moving vehicle. It is 
computed by taking cues from the sensors such as accelerometer, 
gyroscope and magnetometer, providing linear acceleration, angu-
lar velocity and magnetic field, respectively [1]. The sensor data 
is brought to the global reference frame by appropriate matrix 
conversions and is used to compute attitude [2]. Attitude estima-
tors are widely used in various fields such as unmanned vehicle 
navigation [3], robotic manipulators [4,5], virtual reality, motion 
estimation for gait rehabilitation of patients [6,7], and navigation 
in GPS denied environments.

Among the several attitude estimators developed in the past, 
Kalman Filter (KF) and Complementary Filter are the two most 
popular sensor fusion schemes. Kalman filter has been used as 
a linear optimal estimator for wide range of problems and has 
undergone several advancements such as Extended Kalman Filter 
(EKF), Unscented Kalman Filter and Particle filter. However, Kalman 
filters are generally complex and require precise knowledge of pro-
cess and measurement noise for a stable filter operation [9,10]. 

E-mail addresses: rahulkottath@gmail.com (R. Kottath), 
shashipoddar19@gmail.com (S. Poddar).

Instead, complementary filters are very simple and computation-
ally efficient, and are used widely for task of estimating attitude of 
an unmanned aerial vehicle [4].

Complementary filters have been conceived long back by 
Wirkler in 1951 and has been used to fuse measurements with 
low and high frequency noise components obtained from two dif-
ferent sources [11]. Anderson and Fritze applied the CF approach 
for combining heading signal (with low frequency noise) and radio 
deviation signal (with high frequency noise) to obtain a better es-
timate of rate signal [12]. Complementary filter was also discussed 
in detail by several authors for application related to navigation 
and compared it with the Kalman filter [13,14]. Corke and Sari-
palli et al. proved the inability of linear CF to adapt to the varying 
bias of low cost sensors and prepared framework for non-linear 
complementary filter (NCF). Mahony et al. proposed a quaternion 
based nonlinear complementary filter for the estimation of atti-
tude parameters, which has been very popular since then [15–17]. 
However, this non-linear CF technique cannot not provide reliable 
attitude estimate when the vehicle suffers from varying dynamics 
as the accelerometer does not provide stable low pass estimates 
[18]. Euston et al. proposed a NCF that uses the airspeed mea-
surements and angle of attack along with the accelerometer and 
gyroscope measurements for attitude estimation. Several adap-
tation mechanism have been introduced in the literature which 
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could provide adaptation to CF by either adjusting the cut-off fre-
quency of the CF [19] or adjusting the gain parameters based on 
motion parameters [20] or acceleration dynamics [21]. Hong et al. 
proposed a variant of the NCF by adding an adapting the gain pa-
rameters through fuzzy rules [22]. This scheme has a disadvantage 
of being dependent on the membership function for fuzzy rules 
and does not provide desired estimation accuracy. Shen et al. in 
[23] incorporate simultaneous perturbation stochastic approxima-
tion (SPSA) optimization scheme to select an optimum parameter 
value of fuzzy membership function and is combined with the 
fuzzy logic rule to adapt the CF gain parameters according to dy-
namic situation. Tian et al. [24] and Poddar et al. [25] have applied 
optimization schemes to obtain the gain parameters of comple-
mentary filter automatically rather than experimenting via trial 
and error method.

Among the several efforts made by researchers in adapting the 
non-linear complementary filter, this paper aims at adapting the 
linear complementary filter. These LCFs has only one manually fed 
weight parameter unlike two gain parameters in the NCF and is 
found to have better estimation accuracy than the traditional NCF 
and extended Kalman filtering techniques. In this framework, the 
weighted sum of individual filters in the filter bank is combined 
together to provide an adaptive attitude estimate at each time in-
stant. The proposed approach is inspired from the MMAE based 
adaptive Kalman filtering scheme in which the noise parameters 
are varied over time [27,28]. The Kalman filter block, generally 
used in the MMAE structure is replaced here with the linear com-
plementary filter with different α parameters in each block. This 
scheme can adjust to the varying dynamics easily as the weightage 
of individual filter varies with the residual error between estimated 
and measured orientation angle.

The proposed approach of estimating attitude in case of varying 
dynamics is very much suitable to conditions where the flight suf-
fers from the effect of the unknown external disturbances or un-
known system uncertainty or varying actuator dynamics [29]. Near 
space vehicles are one of the modern aerospace vehicles, which 
are subject to failures arising from actuators, sensors or control 
surfaces. These failures/ faults need to be detected and estimated 
as early as possible for improving the overall efficiency of the sys-
tem [30]. Although several fault detection and isolation techniques 
have been developed for nonlinear systems, a wide research is still 
under progress for fault identification and estimation in uncertain 
systems. Several techniques such as adaptive observers [31], su-
pervised learning [32], sliding mode observers [33,34], adaptive 
sliding observers [30], fuzzy-logic based fault diagnosis [35,36], 
have been developed for the task of fault estimation. The multiple-
model adaptive estimation (MMAE) framework has also been ap-
plied earlier for the task of fault detection and identification of 
flight vehicles [37–40]. However, a coherent framework of estimat-
ing attitude using complementary filter in uncertain systems, with 
different failure modules getting excited at different conditions is 
non-existent and can be explored further as future scope of this 
work.

The complete paper is organized as follows: Section 2 presents 
the theoretical background required for understanding the ap-
proach, Section 3 explains the proposed methodology where the 
usage of MMAE framework with linear complementary filter is 
described comprehensively. This is followed by the results and dis-
cussions section which provides detailed analysis of MMAE for 
CF using different datasets and compares it with other standard 
non-linear complementary filtering schemes and extended Kalman 
filter. And, finally Section 5 concludes the paper with future scopes 
of the present work.

2. Mathematical preliminaries

In this article, it is proposed to incorporate a weight adaptation 
mechanism for linear complementary filter using the MMAE con-
cept which has been widely used for the task of adapting Kalman 
filter earlier. The MMAE based adaptive complementary filter pro-
posed here replaces the EKFs in its structure with CF and has 
different gain values for different blocks. This section provides the-
oretical concepts related to orientation estimation from sensors, CF 
and MMAE algorithm and is provided for the sake of completion 
and a better comprehension of the ideas proposed in this paper.

2.1. Orientation from inertial sensors

The orientation of an object can be defined as the angular rota-
tion about the three axes x, y, and z with reference to the global 
North-East-Down (NED) reference frame [41,42]. The inertial sen-
sors, comprising of gyroscope and accelerometer along with mag-
netometer helps in obtaining these orientation angle at every time 
instant. The gyroscope reading provides the rate of change of angu-
lar orientation with respect to the body frame and are represented 
in the global frame as:

φ̇ = p + q sinφ tan θ + r cosφ tan θ (1)

θ̇ = q cosφ − r sin φ (2)

ψ̇ = q sinφ sec θ + r cosφ sec θ (3)

Here, p, q, and r are the gyroscope readings and ϕ , θ , and ψ are 
the rotational angles about x, y, and z-axes, respectively and a dot 
over it represents their derivative. Upon integration, Eq. (1)–(3)
provides the orientation angle which is usually mixed with low 
frequency drift and bias, leading to a large offset even if the sensor 
is stationary [17,43]. To compensate for the drift and bias errors, 
gyroscope estimates are generally fused with the estimates from 
the accelerometer and magnetometer. The equations for computing 
the roll, pitch and yaw angles from the accelerometer and magne-
tometer measurements are given as:

φa = tan−1
(

ay

az

)
(4)

θa = tan−1
( −ax

ay sinφ + az cosφ

)
(5)

ψm = tan−1
(

mx sinφ − my cosφ

mx cos θ + my sin θ sinφ + mz sin θ cosφ

)
(6)

Here, ax , ay , az are the accelerometer measurements and mx , my , 
mz are the magnetometer measurements. The subscript indicates 
the sensitive axis of measurement. Here, the effect of longitudinal 
and centripetal accelerations on the accelerometer measurements 
is ignored to compute the orientation angles.

Tseng et al. simulated the frequency response of the gyroscope, 
accelerometer and magnetometer and found the gyroscope sensor 
to have a complementary frequency response as compared to the 
other two sensors [43]. This creates an ideal situation for fusing 
information on one side from the gyroscope and on the other side 
accelerometer & magnetometer.

2.2. Complementary filter

It is a well-known sensor fusion technique to combine infor-
mation from two modules which have a complementary frequency 
response to each other. The basic structure of the complementary 
filter is shown in Fig. 1. Here, x1 and x2 are the noisy versions of 
original signal x corrupted by high and low frequency noise, re-
spectively such that when they are combined by passing through 
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