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The paper proposes the combination of physics-based surrogate models, adaptive sampling of the design 
space and evolutionary optimization towards the solution of aerodynamic design problems. The Proper 
Orthogonal Decomposition is used to extract the main features of the flow field and Radial Basis Function 
networks allow the surrogate model to predict the target response over the entire design space. In 
order to train accurate and usable surrogates, ad hoc in-fill criteria are provided which smartly rank and 
select new samples to enrich the model database. The solution of two aerodynamic benchmark problems 
is proposed within the framework of the AIAA Aerodynamic Design Optimization Discussion Group. 
The two benchmark problems consist respectively in the drag minimization of the RAE 2822 airfoil in 
transonic viscous flow and of the NACA 0012 airfoil in transonic inviscid flow. The shape parameterization 
approach is based on the Class-Shape Transformation (CST) method with a sufficient degree of Bernstein 
polynomials to cover a wide range of shapes. Mesh convergence is demonstrated on single-block C-grid 
structured meshes. The in-house ZEN flow solver is used for Euler/RANS aerodynamic solution. Results 
show that, thanks to the combined usage of surrogate models and adaptive training in an evolutionary 
optimization framework, optimal candidates may be located even with limited computational resources 
with respect to plain evolutionary approaches and similar standard methodologies.

© 2017 Elsevier Masson SAS. All rights reserved.

1. Background and introduction

The solution of aerodynamic shape optimization problems by 
high-fidelity Navier–Stokes models requires a huge amount of 
computational resources even on modern state-of-art comput-
ing platforms. Indeed, not only a single evaluation can be time-
demanding, but often hundreds or thousands of CFD analyses have 
to be performed to find an optimal solution. In order to speed up 
the optimization process while keeping a high level of fidelity, the 
scientific community is increasingly focusing on surrogate method-
ologies like meta-models, multi-fidelity models or reduced order 
models, which can provide a compact, accurate and computation-
ally efficient representation of the aircraft design performance. 
Nevertheless, the usage of such models is not straightforward as 
the amount and quality of information the user has to provide in 
the learning phase is not known a priori; furthermore, the efficient 
exploitation of learning data may be hampered by the inherent 
complexity of the design problem, e.g. non-linearities in the phys-
ical model, constraints handling, curse of dimensionality, multi-
modal fitness landscape, accuracy vs computational effort trade-off. 
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Hence, no general rule exists on the optimal choice of the type 
of surrogate model, the training and validation strategy, the com-
bination of surrogate model and optimization algorithm. Finding 
the set of parameters which best fit the model to the available 
data is known as the training phase. The training dataset is usu-
ally obtained by sampling the design space (Design of Experiments, 
DOE) and performing expensive high-fidelity computations on the 
selected points. Depending on the adopted surrogate technique, 
design objectives and constraints or vector/scalar fields of interest 
are used to feed the surrogate model. The strategy to properly and 
optimally choose the DACE sampling data set is of paramount im-
portance to achieve a satisfactory accuracy of the surrogate model. 
Unfortunately, classical sampling methods, like Latin Hypercube 
sampling, are very sensible to the nature of the problem at hand 
and they may deceive the surrogate-based optimization by hiding 
or masking the optima locations. This is especially true in aerody-
namic shape design problems where both the aerodynamic model 
non-linearities and the large dimension of the search space com-
bine to emphasize this issue: classical DACE techniques would lead 
to intensively sample the search space, thus vanishing the actual 
advantage of surrogate-based optimization.

Jones et al. [1], among the first, proposed a response sur-
face methodology based on modelling the objective and constraint 

http://dx.doi.org/10.1016/j.ast.2017.04.013
1270-9638/© 2017 Elsevier Masson SAS. All rights reserved.

http://dx.doi.org/10.1016/j.ast.2017.04.013
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/aescte
mailto:e.iuliano@cira.it
http://dx.doi.org/10.1016/j.ast.2017.04.013
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ast.2017.04.013&domain=pdf


274 E. Iuliano / Aerospace Science and Technology 67 (2017) 273–286

functions with stochastic processes (Kriging). The DACE stochastic 
process model was built as a sum of regression terms and normally 
distributed error terms. The main conceptual assumption was that 
the lack of fit due only to the regression terms can be consid-
ered as entirely due to modelling error, not measurement error 
or noise, because the training data are derived from a determin-
istic simulation. Hence, by assuming that the errors at different 
points in the design space are not independent and the correlation 
between them is related to the distance between the computed 
points, the authors came up with an interpolating surrogate model 
able to provide not only the prediction of objectives/constraints at 
a desired sample point, but also an estimation of the approxima-
tion error. After the construction of such a surrogate model, this 
last powerful property is exploited to build an Efficient Global Op-
timization (EGO), which can be considered as the progenitor of a 
long and still in development chain of surrogate-based optimiza-
tion (SBO) methods. Indeed, they found a proper balancing be-
tween the need to exploit the approximation surface (by sampling 
where it is minimized) with the need to improve the approxima-
tion (by sampling where prediction error may be high). This was 
done by introducing the Expected Improvement (EI) concept, al-
ready proposed by Schonlau et al. [2], that is an auxiliary function 
to be maximized instead of the original objective. Sampling at a 
point where this auxiliary function is maximized improves both 
the local (exploitation) and global (exploration) search.

The right choice of the number of points which the initial 
sampling plan would comprise and the ratio between initial/in-
fill points has been the focus of several recent studies. However, 
it must be underlined that no universal rules exist, as each choice 
should be carefully evaluated according to the design problem (e.g., 
number of variables, computational budget, type of surrogate). For-
rester and Keane [3] assumed that there is a maximum budget of 
function evaluations, so as to define the number of points as a 
fraction of this budget. They identified three main cases according 
to the aim of the surrogate construction: pure visualization and 
design space comprehension, model exploitation and balanced ex-
ploration/exploitation. In the first case, the sampling plan should 
contain all of budgeted points as no further refinement of the 
model is foreseen. In the exploitation case, the surrogate can be 
used as the basis for an in-fill criterion, that means some compu-
tational budget must be saved for adding points to improve the 
model. They also proposed to reserve less than one half points to 
the exploitation phase as a small amount of surrogate enhance-
ment is possible during the in-fill process. In the third case, that 
is two-stage balanced exploitation/exploration in-fill criterion, as 
also shown by Sóbester [4], they suggested to employ one third 
of the points in the initial sample while saving the remaining for 
the in-fill stage. Indeed, such balanced methods rely less on the 
initial prediction and so fewer points are required. Concerning the 
choice of the surrogate, the authors observed that it should de-
pend on the problem size, i.e. the dimensionality of the design 
space, the expected complexity, the cost of the true analyses and 
the in-fill strategy to be adopted. However, for a given problem, 
there is not a general rule. The proper choice could come up past 
various model selection and validation criteria. The accuracy of a 
number of surrogates could be compared by assessing their ability 
to predict a validation data set. Therefore, part of the true com-
puted data should be used for validation purposes only and not 
for model training. This approach can be infeasible when the true 
evaluations is computationally expensive.

Forrester also underlined that some in-fill criteria and certain 
surrogate models are somewhat intimately connected. For a surro-
gate model to be considered suitable for a given in-fill criterion, 
the mathematical foundation of the surrogate should exhibit the 
capability to adapt to unexpected, local non-linear behaviour of the 
true function to be mimicked. From this point of view, polynomi-

als can be immediately excluded since a very high order would 
be required to match this capability, implying a high number of 
sampling points. In general, a global search would require a sur-
rogate model able to provide an estimate of the error it commits 
when predicting. To this aim, the authors recognized the work of 
Gutmann et al. [5] who employed various radial basis functions 
in a one-stage goal seeking approach. However, they suggested to 
use Gaussian process methods (e.g., Kriging) as surrogate model 
in a global optimization context. Finally, some interesting suitable 
convergence criterion to stop the surrogate in-fill process were 
proposed. In an exploitation case, i.e. when minimizing the sur-
rogate prediction, one can rather obviously choose to stop when 
no further significant improvement is detected. On the other hand, 
when an exploration method is employed, one is interested in ob-
taining a satisfying prediction everywhere, so that he can decide 
to stop the in-filling when some generalization error metrics, e.g. 
cross-validation, falls below a certain threshold. When using the 
probability or expectation of improvement, a natural choice is to 
consider the algorithm converged when the probability is very low 
or the expected improvement drops below a percentage of the 
range of observed objective function values. However, the authors 
also observed that discussing on convergence criterion may be in-
teresting and fruitful, but “in many real engineering problems we 
actually stop when we run out of available time or resources, dic-
tated by design cycle scheduling or costs”. This is what typically 
happens in aerodynamic design, where the high dimensionality 
of the design space and expensive computer simulations often do 
not allow to reach the global optimum of the design problem but 
suggest to consider even a premature, sub-optimal solution as a 
converged point.

In this framework, the paper proposes a surrogate-based evo-
lutionary optimization approach which includes the training and 
exploitation of physics-based surrogate models by means of ad 
hoc in-fill criteria. A three-stage optimization process is envisaged, 
where each phase reflects a different need in design space ex-
ploration (namely surrogate initialization, “smart” exploration and 
meta-model optimization). The next section will introduce the sin-
gle components of the optimization process, giving details both on 
the surrogate model and on the adaptive training method. The fi-
nal section will be devoted to the critical analysis and comparison 
of the optimization results obtained on the benchmark problems.

2. Surrogate-based optimization approach

The surrogate-assisted optimization method consists of a pro-
cedure embedding several software modules for design space sam-
pling, surrogate models training and testing, in-fill criteria evalu-
ation and evolutionary-based optimization. The core of the com-
putational approach is represented by the surrogate model and 
its training process: a Proper Orthogonal Decomposition (POD) 
model is used to extract the main features from a set of computed 
flow fields, supplemented with Radial Basis Function (RBF) net-
works to fit the POD coefficients and provide the surrogate model 
with global prediction [6]. The POD model is fed both with the 
mesh points and the flow field main variables in order to cap-
ture the correlation between the physical domain deformation, 
due to shape changing, and the most significant flow features. 
Details about the surrogate model are given in section 2.1. The 
first stage of the surrogate-based optimization approach foresees 
a space-filling (e.g. Latin Hypercube, Centroidal Voronoi Tessella-
tion,...) design space sampling to initialize the surrogate model. 
As a result, a predefined number of samples are placed to cover 
the whole design space and aerodynamic analyses are performed 
to compute the objective target function value. This preliminary 
phase is known as a priori sampling. Once initialized the surro-
gate, the choice of the training points is of paramount importance 
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