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This paper proposes the multi-kernel neural networks and applies them to model the nonlinear unsteady 
aerodynamics at constant or varying flow conditions. Different from standard radial basis function (RBF) 
networks with a single Gaussian hidden kernel, the multi-kernel neural networks improve the accuracy 
and generalization capability through linearly combining the Gaussian and wavelet basis functions as 
the hidden basis functions. In order to capture the complex nonlinear characteristics under noisy 
or multiple flow conditions, a novel asymmetric wavelet kernel is also introduced. The training of 
network parameters is achieved by incorporating proper orthogonal decomposition and particle swarm 
optimization algorithm, where the former process is adopted to decide the representative hidden centers 
and the latter technique is introduced to calculate the remaining parameters, including the widths of 
each multi-kernel and the linear weighting values. The proposed aerodynamic reduced-order models 
based on symmetric or asymmetric multi-kernel neural networks are tested by three groups of cases. 
Firstly, a routine reduced-order modeling task of predicting the aerodynamic loads at a constant Mach 
number is performed. Then the measurement noise is added to test the models under noise conditions. 
Finally, these models are utilized to identify the aerodynamic loads across a range of transonic Mach 
numbers. Results indicate that the proposed multi-kernel neural networks outperform the single-kernel 
RBF neural networks in modeling noise-free and noisy aerodynamics at a constant Mach number, as well 
as predicting the aerodynamic loads with varying Mach numbers.

© 2017 Elsevier Masson SAS. All rights reserved.

1. Introduction

In recent years, computational fluid dynamics (CFD) has been 
the most reliable tool to perform high-fidelity numerical simula-
tions of the full-order aerodynamic systems. However, the large 
computational efforts in CFD-based analysis always make it in-
convenient in some engineering applications with respect to aero-
dynamic or aeroelastic analysis. This limitation catalyzes the de-
velopment of aerodynamic reduced-order models (ROMs) [1–4]
based on CFD technique. An obvious advantage of aerodynamic 
ROMs is that they can predict the linear and nonlinear aerody-
namic phenomenon accurately within a fraction of time compared 
with that of CFD-based analysis. By means of different computa-
tional methods, various ROMs can be constructed through learning 
the mappings from training samples extracted from the full-order 
CFD system. The well-established ROMs achieve not only fast aero-
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dynamic predictions but fluid–structure interaction analysis [5,6], 
flight dynamics [7], limit-cycle oscillation (LCO) simulations [8], 
optimization [9] and control designs [10–12].

Among current reduced-order modeling practices, system iden-
tification approaches occupy an important position, since identi-
fying the input–output relationship is of great interest in some 
studies like aeroelasticity or flight dynamics, which can be directly 
achieved by these identification-based methods. For an effective 
aerodynamic reduced-order modeling, the dynamics of aerody-
namic systems are described by the input–output relationship be-
tween structural displacement and aerodynamic coefficients. In the 
transonic flow regime, when the structure moves at a small ampli-
tude, the flow variables and shock wave motion exhibit a linear 
fashion, which can be modeled by dynamic linear ROMs, such as 
the autoregressive with exogenous input (ARX) model [13]. The 
aerodynamic nonlinearity arises due to larger shock wave motions 
resulted from the increasing structural amplitudes [14]. Under this 
circumstance, the dynamically nonlinear models must be adopted. 
Neural networks [15–19], Kriging model [20,21], support vector 
machine [22], high-order Volterra series [23,24] and block-oriented 
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Wiener models [25,26] have all been utilized for modeling non-
linear aerodynamics, as well as performing nonlinear aeroelastic 
simulations. It is worth noting that the use of neural networks is 
extensive in current aerodynamic ROM studies, because neural net-
works have the properties and capabilities of inherent nonlinearity, 
adaptivity and fault tolerance [27].

Neural networks are massively parallel distributed processors 
composed of processing units that acquire the knowledge from a 
learning process [27], which have been applied to a wide range of 
areas including nonlinear system identification [28–30], time-series 
prediction [31–33], system control [34,35], optimization design 
[36,37] and classification [38,39]. Therefore, they provide a power-
ful tool for modeling nonlinear aerodynamic systems. Marques and 
Anderson [15] applied a multi-layer temporal neural network im-
plementing a generic algorithm to identify the nonlinear unsteady 
transonic aerodynamic responses at fixed or a range of Mach num-
bers. Suresh et al. [16] utilized a recurrent neural network to pre-
dict the lift coefficient through experimental data. Huang et al. [25]
proposed a Wiener-type cascade aerodynamic ROM containing a 
linear state-space model followed by a nonlinear neural network 
for modeling the nonlinear aerodynamics of an aeroelastic sys-
tem. Moreover, a recurrent neural network aerodynamic model is 
developed by Mannarino and Mantegazza [17], which gave reason-
able descriptions of transonic nonlinear LCO phenomena induced 
by aerodynamic nonlinearity. The recurrent neural network allow-
ing output delay can also be extended to model the unsteady 
pitch moment coefficient from the experimental data of an air-
craft model with a canard [18]. Recently, Winter and Breitsamter 
[19] applied a recurrent neuro-fuzzy aerodynamic ROM trained by 
a local linear model tree algorithm to accomplish flutter analysis 
across varying freestream conditions. These reduced-order model-
ing practices indicate the potential for reducing the computational 
effort in aerodynamic and aeroelastic analysis by means of neural 
networks, but only a few of them consider modeling the aerody-
namic systems at different flow parameters.

Furthermore, a typical neural network modeling approach, 
which is based on radial basis function (RBF) networks [40], has 
also been widely used to reduce the order of unsteady aero-
dynamic simulations. RBF neural networks have advantages of 
a simple network structure, good generalization capability [41]
and universal approximation [27], thus allowing many applica-
tions such as accurate system identification [42,43] and effective 
control design [44,45]. In 2012, Zhang et al. [46] proposed an 
aerodynamic ROM on the basis of a recursive RBF (RRBF) net-
work to predict the LCO behaviors of two benchmark airfoils in 
transonic flow. Although the developed RRBF network produces 
accurate temporal predictions on unsteady aeroelastic outputs, the 
ROM has a limited robustness to different structural parameters 
since the training signal is calculated from the coupled responses 
at specific aeroelastic parameters. Therefore, Kou and Zhang [47]
and Zhang et al. [48] made some improvements on the network 
training process in order to obtain a well-trained ROM accounting 
for random structural motions with various structural characteris-
tics. Ghoreyshi et al. [49] exploited the ability of RRBF network 
in modeling unsteady aerodynamics at low-speed flight condi-
tions and constructed a computational effective aerodynamic ROM 
by a hierarchy of low-fidelity and high-fidelity aerodynamic sim-
ulations. Winter and Breitsamter [50] tested the recurrent RBF 
network model on describing the nonlinear aerodynamic effects 
of a supercritical airfoil. Lindhorst et al. [51] adopted RBF net-
works to construct a nonlinear mapping between the input and 
output coefficients with a low order reduced by proper orthog-
onal decomposition (POD) technique. Recently, Kou and Zhang 
[52] proposed a layered modeling approach combining linear ARX 
model and nonlinear RRBF neural network model to mimic both 
linear and nonlinear aerodynamic loads accurately. However, in or-

der to extend these ROMs to more complex flow-induced effects 
like varying flow conditions or existing measurement noise, it is 
often desirable to develop more effective and accurate learning 
methods for generalization capability enhancement of current RBF 
networks.

Generalization refers to the neural network’s capability of pro-
ducing reasonable outputs for inputs not encountered during train-
ing [27]. To enhance the efficiency and the generalization capabil-
ity of RBF neural networks, a variety of training approaches are 
developed. These methods overcome the difficulties in determin-
ing the optimal number [53–55] and centers [56,57] of hidden 
neurons, calculating the weights between the hidden and output 
layer [58–60], and extend the network with multi-scale basis func-
tions [61]. Moreover, using asymmetric basis functions [62–65] or 
global optimization algorithms [66–68] also provides an integrated 
training process to decide all the network parameters. Although 
these studies contribute to enhancing the network generalization 
capability, they are all limited to a single hidden kernel and are 
not flexible to identify any type of dynamic systems. For exam-
ple, when a three-dimensional wing model is considered, Lindhorst 
et al. [69] adopted an RBF network with inverse quadric basis 
functions rather than the Gaussian basis functions used for a two-
dimensional configuration in their previous study [51]. To over-
come this limitation, developing more robust RBF networks with 
multiple kernels is desirable, which has indicated better learn-
ing and generalization ability than traditional single-kernel models 
[70,71]. Fu et al. [72] proposed sparse RBF networks with multi-
kernels combining both Gaussian and wavelet functions, which 
outperformed the single-kernel RBF neural network in modeling 
high-dimensional dynamic datasets. Fernández-Navarro et al. [73]
investigated the mixed use of different shapes of Gaussian RBF 
based on different generalized Gaussian distributions for classifica-
tion problems and found that the proposed generalized RBF mod-
els were better than RBF networks with a single type of kernel. 
Subsequently, Khan et al. [74] employed an adaptive RBF kernel 
using Euclidean and cosine distances, and exploited the recipro-
cating properties of the two kernels. This manual fusion of ker-
nels showed the outperformance on three problems of estimation. 
These successes in combining different hidden kernels indicate a 
promising improvement on current aerodynamic ROMs based on 
RBF networks.

In this paper, two efficient aerodynamic ROMs based on RBF 
networks with multiple hidden kernels are developed. These ROMs 
include a multi-kernel function by combining neural network ker-
nels linearly, and the combined symmetric and asymmetric basis 
functions are both utilized. It should be emphasized that for asym-
metric kernels, the name “radial basis function” is problematic 
because the asymmetric basis function is not radial. Therefore, the 
proposed models are named as symmetric or asymmetric multi-
kernel neural networks. The proposed ROMs are trained to identify 
the dynamic relationship between the structural motions and the 
aerodynamic loads of an airfoil in transonic flow.

The main contribution of this work lies in the development 
of multi-kernel neural networks for aerodynamic applications. Be-
sides, an original asymmetric multi-kernel function is proposed to 
enhance the performance of neural networks based on symmet-
ric basis functions. This paper is organized as follows. Sec. 2 is 
the introduction of the RRBF network used for modeling unsteady 
aerodynamics. The proposed multi-kernel neural networks are de-
scribed in Sec. 3. In Sec. 4, three aerodynamic test cases, including 
constant, noisy and parameter-varying flow conditions, are pre-
sented to validate the effectiveness of the proposed reduced-order 
modeling approaches. The conclusion is shown in Sec. 5.
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