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Model reference adaptive control (MRAC) has been used in numerous applications to improve system 
performance in the presence of system uncertainties. To achieve stringent tracking performance 
specifications, fast adaptation is required in the MRAC framework. However, fast adaptation with high 
gain adaptive rates could cause high frequency oscillation in the control response, resulting in system 
instability. In this paper, a novel method is proposed to improve the transient performance, and to 
restrain high frequency oscillation of the control signal, without modifying the selected reference model. 
An error feedback compensator is introduced into the control signal in this method, to restrict the 
control signal oscillation, caused by the estimate error of unknown parameter. Based on the augmented 
error dynamics, the compensator is designed as a robust controller. Moreover, the error feedback matrix 
can be obtained by solving a set of linear matrix inequalities. The control method is applied to a 
controlled wing rock aircraft dynamics model to verify the effectiveness. Simulation results show that 
the proposed method allows for fast adaptation with high gain adaptive rates, while eliminating high 
frequency oscillation and guaranteeing transient performance.

© 2017 Elsevier Masson SAS. All rights reserved.

1. Introduction

As a popular control methodology of increasing interest for ap-
plications in both science and engineering domains, model refer-
ence adaptive control (MRAC) has its unique capabilities to accom-
modate system parametric, and structural uncertainties caused by 
payload variations, component failures, and external disturbances 
[1]. The MRAC was firstly introduced to improve the aircraft per-
formance in the presence of system uncertainties [2,3]. In MRAC, 
the controller gains were updated based on the error between a 
selected reference model and the uncertain system, and to make 
the uncertain system be able to track the reference model. How-
ever, the controller performance could be negative affected by the 
excessive errors, and many efforts were paid to improve the tran-
sient behavior of the tracking errors in the last few years. The 
majority of these efforts led to non-adaptive high gain feedback 
[4,5], switching control law [6], and a parameter-dependent per-
sistent excitation condition [7]. Another approach to decrease the 
tracking error magnitude and achieve fast adaption is to increase 
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the adaptive learning rates. However, high gain adaptive learning 
rates could result in high frequency oscillations in the control sig-
nal, which could excite unmolded dynamics [8], and lead to system 
instability [9,10].

From the perspective of improving the transient performance 
and restraining the high frequency oscillations, a great deal of ef-
fort has been dedicated to modify the control architecture and 
the adaptive laws. A composite adaptive controller was proposed, 
which suggested a new adaptation law using both tracking error 
and prediction error, which led to less oscillatory behavior in the 
presence of high adaptive rates as compared to MRAC [11–14]. 
Cao and Hovakimyan [15,16] proposed a L1 adaptive control design 
method. In this architecture, a low pass filter was employed in the 
control signal to filter out the high frequency components, so that 
the L1 adaptive control theory could guarantee transient perfor-
mance and robustness in the presence of fast adaptation. Yucelen 
and coworkers [17,18] presented a new framework involving a 
modification term in the update law, which filtered out the high 
frequency content contained in the update law while preserving 
asymptotic stability of the system error dynamics. This key feature 
allows for robust, fast adaptation with high gain adaptive learn-
ing rates. Recently, Annaswamy and coworkers [19–21] analyzed 
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a Luenberger observer-based adaptive control scheme to improve 
transient performance, where the reference model was modified 
by adding a state error (or output error) feedback.

In this paper, a robust model reference adaptive control based 
on linear matrix inequality (RMRAC-LMI) is proposed. The RMRAC-
LMI attempts to minimize the effect of the high frequency oscilla-
tion caused by the estimation errors by adding an error feedback 
term in the control signal. A design guideline is provided for the 
selection of the feedback gain based on the linear matrix inequal-
ity. The proposed RMRAC-LMI enables one to achieve close tracking 
of reference signals and allows for fast adaptation with high gain 
adaptive rates, while eliminating high frequency oscillation and 
guaranteeing transient performance.

The remainder of this paper is structured in the following man-
ner. Section 2 provides preliminaries related to the standard MRAC. 
Section 3 presents the proposed RMRAC-LMI method, analyzes the 
stability properties for the case of systems with matched uncer-
tainty, and detailed the design procedure of the error feedback 
matrix. Section 4 presents the simulation results for an illustrative 
example, which demonstrates the adaptive and robust performance 
of our controller. Finally, Section 5 concludes this paper.

2. Control problem formulation

Consider an uncertain system given by

ẋ(t) = Ax(t) + B
(
u(t) + θ T �

(
x(t)

))
(1)

where x(t) ∈ R
n is the state vector, u(t) ∈ R

m is the control input, 
A ∈ R

n×n and B ∈ R
n×m are known matrix, θ ∈ R

s×m is the un-
known constant weight matrix, �(·) : Rn → R

s is a known vector 
of basic functions in the form of �(x) = [φ1(x), φ2(x), ..., φs(x)]T

∈ R
s . Furthermore, the pair (A, B) is assumed to be controllable, 

x(t) is available for feedback, and u(t) is the class of admissible 
controls consisting of measurable functions.

The reference model is described as follows,

ẋm(t) = Amxm(t) + Bmr(t) (2)

where xm(t) ∈ R
n is the reference state vector, r(t) ∈ R

r is a 
bounded piecewise continuous reference input, Am ∈ R

n×n is Hur-
witz, and Bm ∈ R

n×r with r ≤ m. Since r(t) is bounded, it follows 
that xm is uniformly bounded for all xm(0).

The underlying problem here is to design a control input u in 
Eq. (1) so that the closed loop system has bounded solutions and 
x tends to xm with bounded errors in the presence of the uncer-
tainties. Consider the following feedback control law,

u(t) = ub(t) + uad(t) (3)

where ub(t) is a baseline feedback control given by

ub(t) = −K1x(t) + K2r(t) (4)

where K1 ∈ R
m×n and K2 ∈ R

m×r are baseline control gains such 
that the following equations hold,

Am = A − B K1, Bm = B K2 (5)

And uad(t) is the adaptive feedback control component given by

uad(t) = −θ̂ T (t)�
(
x(t)

)
(6)

where θ̂ (t) ∈ R
s×m is an estimate value of θ , satisfying the weight 

update law:

˙̂
θ(t) = −��

(
x(t)

)
eT (t)P B (7)

with � = �T > 0, e(t) = x(t) − xm(t) is the model following error 
and P = P T > 0 is the solution to the algebraic Lyapunov equation

AT
m P + P Am + Q = 0 (8)

Fig. 1. Architecture of the standard MRAC architecture.

for any Q = Q T > 0. The architecture of the standard model refer-
ence adaptive control is given in Fig. 1.

Introducing the parameter estimation error as θ̃ (t) = θ̂ (t) − θ , 
the tracking error dynamics can be written as

ė(t) = Ame(t) + Bmθ̃ T (t)�
(
x(t)

)
(9)

This control architecture can guarantee asymptotic tracking 
x(t) → xm(t) as t → ∞, while ensuring the boundedness of all 
closed-loop signals. However, if the adaption rate is increased to 
obtain better tracking in transient, the transient behavior of x(t)
and u(t) cannot be guaranteed because high frequency oscillations 
are generated in the control signal [22].

3. Robust model reference adaptive control

In this section, a robust model reference adaptive controller 
based on linear matrix inequality is deduced to restrain the high 
frequency oscillation caused by the large adaptive learning rates. 
In the proposed RMRAC-LMI, a state-error feedback is introduced 
in the control signal. Then, the entirely design procedure of the er-
ror feedback matrix is also offered, and its stability properties for 
the case of systems with matched uncertainty is further proved.

3.1. Robust MRAC architecture

A state-error feedback component is introduced in the standard 
model reference adaptive control law (Eq. (3)) to form the robust 
model reference adaptive scheme,

u(t) = ub(t) + uad(t) + um(t) (10)

where um(t) is the modified control signal, defined as

um(t) = K3
(
x(t) − xm(t)

)
(11)

where K3 is the state-error feedback gain. Hence, the control signal 
could be expressed as

u(t) = −K1x(t) + K2r(t) − θ̂ T (t)�
(
x(t)

) + K3
(
x(t) − xm(t)

)
(12)

Substitute Eq. (12) into Eq. (1),

ẋ(t) = (A − B K1)x(t) + B K2r(t) + B θ̃ T (t)�
(
x(t)

)
+ B K3

(
x(t) − xm(t)

)
(13)

According to the matching condition Eq. (5), the uncertain sys-
tem could be written in the form of

ẋ(t) = Amx(t) + Bmr(t) + B θ̃ T (t)�
(
x(t)

)
+ B K3

(
x(t) − xm(t)

)
(14)

Subtracting Eq. (2) from Eq. (14),

ėm(t) = Amem(t) + B θ̃ T (t)�
(
x(t)

) + B K3em(t) (15)
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