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A new adaptive nonlinear guidance law for homing missiles to intercept maneuvering targets in terminal 
phase is proposed. This guidance law generates smooth acceleration commands and is able to stabilize 
the relative lateral velocity in a desired finite time. The proposed guidance law uses bounds of the target 
acceleration and jerk and is consisting of two adaptive terms. It is proved that the first adaptive term of 
the proposed guidance law converges to the target acceleration normal to the line of sight. Finite time 
stability of the guidance loop is proved by using Lyapunov stability theorem. Numerical simulations are 
performed to illustrate the proposed guidance law potential.

© 2017 Published by Elsevier Masson SAS.

1. Introduction

Proportional navigation (PN) and its variants have been widely 
used as homing guidance laws because they are highly efficient 
and easy for implementation. The PN guidance law has the re-
quired accuracy to intercept a non-maneuvering target or a weakly 
maneuvering target. However, for the task of intercepting a target 
with maneuverability close to that of a missile, PN guidance laws 
are unable to achieve the required precision [1–3].

Recently to deal with maneuverable targets, control theories 
have been used to design of guidance laws. Lyapunov-based non-
linear guidance law [4] and H∞ guidance laws [5–7] were de-
signed. But these are not guidance laws with finite time conver-
gence.

In many applications, the time of termination is really quite 
short. For example, in the space interception where a missile is 
intercepting a ballistic target, sometimes the time of terminal guid-
ance is only several seconds such that the guidance law is required 
to ensure finite time convergence of the line of sight angular rate 
[3]. The problem of finite-time stabilization for nonlinear systems 
is studied in some references such as [8–10]. Also, finite time guid-
ance laws are proposed in [11–17]. These guidance schemes are 
consist of a non-smooth sign function that causes chattering in 
guidance command. Due to chattering, the application of these 
guidance laws usually is not possible in guidance loop, since the 
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profile generated by the guidance system must be followed by 
the autopilot in control loop [18]. Therefore to apply these guid-
ance laws, some modifications are required. Usually a saturation 
function is used in lieu of the sign function for the purpose of re-
moving the chattering. However, this method brings a finite steady 
state error and lead to tracking within a guaranteed precision 
rather than perfect tracking [19–21].

The other way to eliminate chattering is to use second order 
sliding mode (SOSM) control. Guidance laws based on the second-
order sliding-mode are designed in [18,22–24]. For the SOSMs, 
commonly the finite time convergence analysis has been done 
without the use of the Lyapunov function approach in uncertain 
nonlinear systems. Some approaches depend on the state deriva-
tives on, so-called, homogeneity principle [18,25], which also does 
not allow to estimate the reaching time. Some studies are based 
on disturbance observer [23,26] and [27]. The main drawbacks in 
these guidance laws are the absence of a formal closed-loop sys-
tem stability proof and also existence of sign function.

Recently, adaptive nonlinear controllers have been proposed, 
the interest being the adaptation of uncertainty effects. Then, the 
control gain is reduced, therefore the control signal has lower chat-
tering [19,24]. Some adaptive sliding mode control schemes are 
proposed in the literatures [20,28–30]. In [28] only asymptotic sta-
bility is guaranteed and the main drawback of the approaches that 
are proposed in [20] and [29], is the chattering which is not com-
pletely eliminated. Finally in [30] the finite time convergence of 
the closed loop system dynamics and adaptive variable is not en-
sured.
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Fig. 1. Missile–target engagement geometry.

The current paper presents a new simple adaptive nonlinear 
guidance law with finite time convergence. The obtained guidance 
law generates smooth acceleration commands. Also, the finite time 
stabilization of guidance loop is proved by using Lyapunov method. 
The main advantage of the proposed algorithm is availability of the 
convergence time relation.

The paper is organized as follows. In Sec. 2 the equation of 
motion is formulated. In Sec. 3, the proposed adaptive nonlinear 
guidance law is designed. Numerical simulation results are shown 
in Sec. 4, and conclusions are reported in Sec. 5.

2. Equations of motion

In this section, the model of guidance loop dynamical system 
is introduced. Consider a two-dimensional interceptor and target 
engagement as shown in Fig. 1.

It is assumed that the missile and the target are point masses 
moving in plane. Then, the missile–target engagement model 
shown in Fig. 1 can be described by the following nonlinear differ-
ential equations [17,18] and [23]:

Ṙ = V R

V̇ R = V 2
q

R
+ AT ,R − sin(q − φM)AM

q̇ = Vq

R

V̇q = − Vq V R

R
+ AT ,q − cos(q − φM)AM

(1)

where R is the relative range, q is the LOS angle, q̇ is the line 
of sight rate, Vq = Rq̇ is the relative lateral velocity, φM and φT

represent the flight path angles of the target and missile, respec-
tively, AT ,R , AT ,q are projections of bounded target acceleration 
along and orthogonal to LOS and AM is the interceptor acceler-
ation. The object of guidance law is nullify the relative lateral 
velocity (Vq = Rq̇ → 0) in a finite time. This will lead to a colli-
sion with the target [11].

3. Adaptive nonlinear guidance law

In this section the proposed adaptive nonlinear guidance law is 
introduced. Assume that the target acceleration normal to LOS AT ,q

is uncertain with |AT ,q| ≤ L AT and its first derivative bounded with 
| ȦT ,q| ≤ L ȦT

.

Theorem. The following guidance law⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

AM = 1

cos(q − φM)

(
− Vq V R

R
+ k1 Vq|Vq|−γ + k2ξ1 + k3ξ2

)

ξ̇1 = Vq

|Vq|
ξ̇2 = k2k3|ξ2| Vq

|Vq| − k4
ξ2

|ξ2|

(2)

with conditions

⎧⎪⎪⎨
⎪⎪⎩

k1,k2 > 0
k4 = L ȦT

(
L AT + k2|ξ1|

) + η

η = Positive Constant
0 < γ < 1

(3)

nullifies the relative lateral velocity in a finite time.

Proof. Substituting guidance law (2) in the relative equation of 
motion (1) gives

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

V̇q = AT ,q − k1 Vq|Vq|−γ − k2ξ1 − k3ξ2

ξ̇1 = Vq

|Vq|
ξ̇2 = k2k3|ξ2| Vq

|Vq| − k4
ξ2

|ξ2|

(4)

Now, consider the following Lyapunov function candidate:

V = k2|Vq| + 1

2
(AT ,q − k2ξ1)

2 + |ξ2| (5)

which is positive definite with k2 > 0. By taking the time derivative 
of V when V > 0, using (4), we obtain:

V̇ = k2
Vq

|Vq| V̇q + (AT ,q − k2ξ1)( ȦT ,q − k2ξ̇1) + ξ2

|ξ2| ξ̇2

= k2
Vq

|Vq|
(

AT ,q − k1 Vq|Vq|−γ − k2ξ1 − k3ξ2
)

+ (AT ,q − k2ξ1)

(
ȦT ,q − k2

Vq

|Vq|
)

+ ξ2

|ξ2|
(

k2k3|ξ2| Vq

|Vq| − k4
ξ2

|ξ2|
)

= k2
Vq

|Vq| (AT ,q − k2ξ1) − k2
Vq

|Vq|k1 Vq|Vq|−γ

− k2
Vq

|Vq|k3ξ2 + ȦT ,q(AT ,q − k2ξ1)

− k2
Vq

|Vq| (AT ,q − k2ξ1) + k2k3|ξ2| Vq

|Vq|
ξ2

|ξ2| − k4
ξ2

|ξ2|
ξ2

|ξ2|
= −k1k2|Vq|1−γ + ȦT ,q(AT ,q − k2ξ1) − k4

(6)

By choosing k1, k2 > 0 and k4 = L ȦT
(L AT + k2|ξ1|) + η, where η

is a strictly positive constant, yields:

V̇ = −k1k2|Vq|1−γ + ȦT ,q(AT ,q − k2ξ1)

− L ȦT

(
L AT + k2|ξ1|

) − η ≤ −η
(7)

The condition (7) implies

0∫
V (0)

dV ≤
t∫

0

−ηdt

− V (0) ≤ −ηt

t ≤ V (0)

η

(8)

Therefore condition (7) guarantees the convergence of V from 
V (0) = k2|Vq(0)| + 1

2 (AT ,q(0) − k2ξ1(0))2 + |ξ2(0)| to zero in finite 
time (8). Hence, the convergence of relative lateral velocity to zero 
and the adaptive term k2ξ1 to AT ,q in the guidance loop dynamics 
(4) are guaranteed.
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