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One of challenging issues in structural random analysis is to accurately predict the dynamic stresses. It 
is even important for fatigue life prediction and strength-safe design. This paper proposes an accurate 
and efficient computational method to obtain the dynamic stresses of structures under random loading. 
Firstly, the random loading given by PSD is transferred into harmonic functions. Meanwhile, structural 
modal stress analysis is conducted. Based on the modal stress superposition and the equivalent treatment 
for higher modal responses, the dynamic stresses are determined. It consists of two parts: one is from 
the modal stress superposition, and the other is from the equivalent analysis including the contributions 
of the ignored higher modes. This new method is verified by the experiment conducted in our laboratory, 
showing that the dynamic stresses predicted by the new method agree well with the experimental 
results, and it is of high computational efficiency. The proposed method can be easily applied to dynamic 
stresses prediction for engineering structures under random loading.

© 2016 Elsevier Masson SAS. All rights reserved.

1. Introduction

Random vibration analysis is one of common tasks in designing 
aeronautic and airspace structures [1]. When a structure encoun-
ters random loading, especially if that random excitation is large 
or its band covers several natural frequencies of the structure, dy-
namic stresses are usually large resulting in vibratory fatigue fail-
ure [2,3]. For aircrafts, vibration fatigue failure usually happens at 
the area with a protrusion, such as ventral fin, or local resonant ar-
eas with flaws or stress concentration, and it would seriously affect 
their service and safety. In evaluating the strength and the fatigue-
life of structures, precise prediction on dynamic stresses is of great 
importance.

For given excitations, the system equation of motion describes 
structural dynamic behavior. Responses, like displacements, veloci-
ties, accelerations, strains and stresses, can be obtained by solving 
this mathematical equation [4,5]. For deterministic loading, there 
are many methods to solve the equation in time domain, such 
as immediate integration method, mode superposition method, 
mode acceleration method [6–10]. Among them, the modal dis-
placements are usually superposed, however the modal stresses 
are not handled frequently by structure analysts. For random load-
ing, the correlation functions of responses are the convolutions of 
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the correlation functions of excitations and unit impulse response 
function of the structure [11,12]. However, these calculations are 
complex and cumbersome, so that they are seldom used in ran-
dom analysis for engineering structures.

For this consideration, in most cases, Power Spectrum Density 
(PSD) is used to characterize the statistical property of random 
variables, and the system equation is solved in frequency domain 
by Laplace transform or Fourier transform. The PSD of each struc-
tural output can be obtained by multiplying the PSD matrix of 
excitations and transfer functions of the linear system. To achieve 
accurate dynamic stresses, the stress transfer functions should be 
determined by a large number of experiments, thus leading to high 
expense in research and development. Meanwhile, a large number 
of matrix multiplications at discrete frequencies also need a signif-
icant computational effort.

For a large scale multi-freedom linear system, dynamic re-
sponses are usually obtained by means of transformation of coordi-
nates [13–16]. Thus, the system responses are expressed by super-
posing modal responses. Several computational methods, such as 
Square-Root-Sum-Squares (SRSS) method, Absolute (ABS) method, 
and Combined-Quadratic-Combination (CQC) method, are widely 
used in engineering practice. Using SRSS method, any modal re-
sponse is assumed to be independent of each other, whilst using 
ABS method, it is supposed to be precisely correlated to oth-
ers. These two methods don’t take the exact couplings of dif-
ferent modes into account. Comparing with them, CQC method 
[11,12] accurately considers different modal cross-terms; never-
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theless, the coupling coefficients of cross-terms are complex and 
time-consuming in calculation. Pseudo excitation method [17–20]
provided an effective approach for calculating structural responses 
under random loading by transferring a stationary random exci-
tation to a harmonic excitation, or transferring a non-stationary 
random excitation to the deterministic time history.

So far, all the above-mentioned methods are mainly used to 
calculate structural displacements under random vibration. The dy-
namic stresses from those methods are usually not accurate, which 
is crucial for fatigue-life prediction. The reasons may be: 1) usu-
ally only a few low modes are included, and the higher modes are 
neglected in calculation; 2) the stresses are obtained by differenti-
ating the displacement functions.

Aiming at improving the computational efficiency and the ac-
curacy of dynamic stresses induced by random loading, a new 
method is presented in this paper. After transferring the random 
loading given by PSD into harmonic loading, the dynamic stresses 
are obtained by combining the modal stresses superposition with 
the equivalent treatment for higher modal responses. Thus, this 
new algorithm can avoid the derivation of displacement functions, 
and is of high computational efficiency with all the contributions 
of modal cross-terms and the higher modes which are truncated 
in usual methods. And also, it is easily programmed for large finite 
element models of engineering structures.

This paper is organized as follows. Following the introduction, 
the new computational method is presented in Section 2. In Sec-
tion 3, as an example, it is applied to predict the dynamic stresses 
of a thin plate subjected to white noise. Experiments are described 
in Section 4, with comparison among the predictions using the 
new method, the experimental results, and the results using CQC 
method. Section 5 draws the conclusions.

2. New computational method for dynamic stresses under 
random loading

2.1. Theoretical analysis

Considering a multi-freedom system, its equation of motion un-
der random loading can be expressed as

[M]{ ÿ} + [C]{ ẏ} + [K]{y} = {
f (t)

}
(1)

where [M], [C], [K] is the matrix of mass, the matrix of damp, and 
the matrix of stiffness of a structure, respectively; { ÿ}, { ẏ}, {y} is 
the nodal acceleration, the nodal velocity, and the nodal displace-
ment, respectively. f (t) is the equivalent deterministic excitation 
obtained from Eq. (2)

f (t) =
√

S f (ω)eiωt (2)

where S f (ω) is the PSD of the stationary random loading.
Suppose

{y} = [Φ]{q(t)
} =

N∑
i=1

qi{φ}i (3)

where q(t) is the modal response, [Φ] is the normalized modal 
matrix.

Substituting Eq. (3) into Eq. (1), and left-multiplying the equa-
tion with [Φ]T (T means matrix transpose), it becomes

[M]{q̈} + [C]{q̇} + [K]{q} = [Φ]T {
f (t)

}
(4)

and

[M] = [Φ]T [M][Φ],
[C] = [Φ]T [C][Φ],
[K] = [Φ]T [K][Φ].

The system equation is decoupled into N independent equations 
as

q̈i + 2ξiωi q̇i + ω2
i qi = Pi, i = 1,2 . . . , N (5)

In Eq. (5), ξi is the ith modal damping ratio; ωi is the ith modal 
frequency; Pi is the ith generalized excitation and Pi = {φ}T

i { f (t)}. 
The steady modal response is obtained from

qi = Hi Pi (6)

where Hi is the frequency response function, and Hi = (ω2
i −ω2 +

2iξiωiω)−1.
In common finite element analysis, dynamic stresses are ob-

tained by differentiating displacement functions, which losses 
more accuracy in the random analysis when the excitation changes 
drastically and frequently. Therefore, in this study, it is proposed 
that the dynamic stresses will be determined from the following 
equation

{σ } =
N∑

i=1

qi
{
φσ

}
i (7)

where {φσ }i is the ith modal stresses representing the stress dis-
tribution on the structure when only the corresponding modal 
response is a unit, and other modal responses are zero. This ap-
proach can avoid the loss of accuracy induced from differentiat-
ing displacement functions, and make it possible to directly ana-
lyze dynamic stresses in each concerned position on the structure, 
which is particularly necessary in stress prediction for vibration fa-
tigue or stress analysis with stress concentration.

Furthermore, the dynamic stresses can be divided into two 
terms as

{σ } =
Nd∑

i=1

qi
{
φσ

}
i +

N∑
i=Nd+1

qi
{
φσ

}
i (8)

where the first term is superposition of the low modes, and the 
second term represents the modal responses of the ignored higher 
modes from Nd + 1 to N . Actually, the contributions of inertia and 
damping to the higher modal response are smaller comparing with 
structural stiffness, thus, these higher modal responses could be 
easily solved by

qi = Pi

ω2
i

, i = Nd + 1, . . . , N (9)

Substituting Eq. (9) into Eq. (8), and let {σ̃ }s be the global quasi-
static response, as

{σ }s =
N∑

i=1

Pi

ω2
i

{
φσ

}
i (10)

Then, the dynamic stresses can be determined by

{σ } = {σ }s +
Nd∑

i=1

{
φσ

}
i

[
qi − Pi

ω2
i

]
(11)

It is seen that the proposed method given above provides an accu-
rate and efficient approach to obtain the dynamic stresses under 
random loading. The dynamic stresses are represented by com-
bining a small number of modal stresses with the stresses from 
the equivalent quasi-static treatment for higher modal responses, 
so this proposed method can be named as Precise Modal Stresses 
method. This method eliminates the computational expense on 
higher modes, but account for their contributions. It is seen from 



Download English Version:

https://daneshyari.com/en/article/5472947

Download Persian Version:

https://daneshyari.com/article/5472947

Daneshyari.com

https://daneshyari.com/en/article/5472947
https://daneshyari.com/article/5472947
https://daneshyari.com

