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This paper presents a new robust adaptive filtering method for transfer alignment by taking into account 
the systematic errors of observation and kinematic models in the filtering process. The proposed method 
overcomes the limitation of the traditional Kalman filter, that is, the requirement of precise kinematic 
and observation models for transfer alignment. It adaptively adjusts and updates the prior information 
through the equivalent weighting matrix and adaptive factor to resist the disturbances of systematic 
model errors on system state estimation, thus improving the accuracy of state parameter estimation. 
Experimental results and comparison analysis demonstrate that the proposed robust adaptive filtering 
method can effectively improve the performance of transfer alignment, and the achieved performance is 
much higher than those of the Kalman and traditional robust adaptive Kalman filters.

© 2016 Elsevier Masson SAS. All rights reserved.

1. Introduction

In the context of delivering a military weapon such as a mis-
sile (referred to as the slave) from a moving or stationary base 
(referred to as the master), transfer alignment is defined as the 
process determining the orientation of the slave inertial navigation 
system (INS) according to the accurate information of the master 
INS [1,2]. As weapon systems require the quick response and high 
accuracy, rapidity and accuracy are always the objectives of trans-
fer alignment.

The rapid transfer alignment is a velocity and attitude match-
ing method to process host velocity and attitude information by 
using the Kalman filter to estimate the required information [3,4]. 
It can achieve the sub-milliradian alignment accuracy in a short 
time period even in the case of the wing-rock maneuver, without 
requirement of the lengthy-time lateral acceleration. It can also 
easily achieve the rapid alignment of SINS in the marine sway 
environment [5,6]. Therefore, rapid transfer alignment has been 
recognized as one of the most rapidest and accurate techniques 
for transfer alignment [1,4].

However, the use of the Kalman filter in rapid transfer align-
ment requires the accurate kinematic and observation models to 
achieve optimal estimation [7]. If deviations are involved in the 
ideal kinematic and observation models, the filtering solution will 
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be biased or even divergent. Due to the various error sources in 
rapid transfer alignment, such as inertial sensor error, level arm ef-
fect, observation noise and carrier’s flexure, it is unavoidable that 
the kinematic and observation models contain global or local sys-
tematic errors. Therefore, it is necessary to establish advanced fil-
tering methods to accommodate the systematic errors of kinematic 
and observation models for improving the accuracy and stability of 
transfer alignment.

The use of robust estimation theories is a method to improve 
the robustness of the Kalman filter for rapid transfer alignment. Ali 
and Ushaq reported a robust Kalman filter by using the Huber’s 
generalized maximum likelihood estimation theory to improve the 
robustness of the Kalman filter for INS transfer alignment [8]. Sun 
et al. improved the robustness of the Kalman filter using the hid-
den Markov model for INS transfer alignment [9]. However, these 
methods do not take into account systematic model errors in the 
filtering process, leading to the incapability to deal with random 
system noises.

The adaptive Kalman filter is a method to improve the esti-
mation accuracy by adaptively adjusting and updating the prior 
information through the adaptive factor. Yu et al. reported an adap-
tive Kalman filter to estimate the misalignment angles under the 
circumstance that the model of wing flexure of an aircraft is un-
known [10]. The adaptive filter does not require the priori knowl-
edge of statistical characteristics of systematic noise, leading to 
the improved filtering accuracy in comparison with the standard 
Kalman filter. However, the adaptive Kalman filter has a poor sta-
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bility, especially in the presence of random errors [11,12]. It is also 
expensive in computational load.

The robust adaptive filtering is a method to deal with obser-
vation and system noises by robustly estimating the covariance 
matrix of observation noise and adaptively adjusting the covari-
ance matrix of system state noise through the adaptive factor [13,
14]. It cannot only augment additional parameters into the covari-
ance matrix of predicted state vector obtained from the Kalman 
filtering model to compensate system noises, but it can also obtain 
reliable filtering results especially in the presence of abnormal ob-
servations by applying robust estimation principles to observation 
information. However, the existing methods on robust adaptive 
filtering mainly focus on the incorporation of robust estimation 
theories in the adaptive filtering process, without consideration of 
systematic model errors in the adaptive filtering process [12–16]. 
Further, these methods are dominated by integrated navigation 
system, while there has been very limited research focusing on 
using robust adaptive filtering for transfer alignment.

This paper presents a new robust adaptive filtering method for 
rapid transfer alignment. Unlike the existing robust adaptive fil-
tering technique that incorporates robust estimation theories in 
the filtering process to deal with systematic errors, this method 
takes into account the systematic errors of kinematic and obser-
vation models directly in the filtering process to improve the ac-
curacy of transfer alignment. This method adaptively adjusts and 
updates the prior information in the filtering process through the 
equivalent weighting matrix of observation vector and the adap-
tive factor to restrain the disturbances of abnormal observations 
and kinematic model’s systematic error on state parameter esti-
mation. The disturbance of abnormal observations is restrained by 
adaptively reducing the elements of the equivalent weighting ma-
trix constructed from observation residuals. The adaptive factor is 
constructed from predicted residuals to control the utilization of 
predicted state information for state parameter estimation, thus 
restraining the disturbance of kinematic model error on system 
state estimation. The proposed filtering method not only accepts 
the systematic errors of kinematic and observation models, but it 
also reduces the alignment time by decreasing the size of the sys-
tem state vector. Experiments and comparison analysis have been 
conducted to comprehensively evaluate the performance of the 
proposed methodology for transfer alignment.

2. Kinematic and observation models of transfer alignment

Assume that the navigation coordinate systems of both the 
master and slave SINSs are the E–N–U (East–North–Up) geographic 
coordinate system. The state vector is defined as

X(t) = [δvE δvN φE φN φU δϕ δλ ∇E ∇N εE εN εU ]T (1)

where X(t) is the system state vector; (δvE, δvN) is the velocity 
error between the master and slave SINSs; (φE, φN, φU) is the mis-
alignment angle of the slave SINS; δϕ and δλ are the longitude 
and latitude errors between the master and slave SINSs; (∇E , ∇N ) 
is accelerometer’s zero bias; and (εE , εN , εU ) is the gyro drift.

By taking into kinematic model’s systematic error, the state 
equation of the transfer alignment system can be described as

Ẋ(t) = F(t)X(t) + W(t) + D(t)s(t) (2)

where F(t) is the state transition matrix, W(t) = [01×7 w∇E w∇N

wεE wεN wεU ]T is the system state noise, which obeys W(t) ∼
N(0, �Wk ), D(t) is the coefficient matrix of kinematic model’s sys-
tematic error, and s(t) is kinematic model’s systematic error with 
the priori value of zero.

Taking into account the deviation of observation, the observa-
tion equation of the transfer alignment system may be written as

Z(t) = H(t)X(t) + V(t) + G(t)u(t) (3)

where Z(t) is the observation vector, H(t) the observation matrix, 
V(t) = [vδvE vδv N v�θ v�γ v�ψ ]T the observation noise obeying 
V(t) ∼ N(0, �Vk ), u(t) observation model’s systematic error with 
the priori value of zero, and G(t) the coefficient matrix for the 
systematic error of the observation model.

Observation vector Z(t) is defined as the velocity error and mis-
alignment angle between the master and slave SINSs

Z(t) = [δv E δv N �θ �γ �ψ]T (4)

where (�θ, �γ , �ψ ) is the attitude error between the master and 
slave SINSs.

By discretizing (1) and (3) at time tk , the discrete kinematic 
and observation models of the transfer alignment system may be 
written as{

Xk = �k,k−1Xk−1 + Wk + Dk,k−1sk

Zk = HkXk + Vk + Gkuk
(5)

It is evident from (5) that systematic model errors sk and uk dis-
turb the filtering process, leading to the biased or even divergent 
solution for transfer alignment. In fact, the traditional Kalman filter 
requires E(Wk) = 0 and E(Vk) = 0. However, due to the influence 
of systematic errors, this condition cannot be satisfied, that is [17],{

sk = E(Wk) = E(Xk − �k,k−1Xk−1) �= 0

uk = E(Vk) = E(HkXk − Zk) �= 0
(6)

Therefore, in order to improve the accuracy of transfer alignment, 
it is necessary to consider in the filtering process the disturbances 
due to the systematic errors of the kinematic and observation 
models.

3. Filtering method

3.1. Analysis of systematic model errors

The predicted state vector at time tk is

X̄k = �k,k−1X̂k−1 (7)

where X̂k−1 is the estimated state vector at time tk−1.
The error equation for one-step predicted vector X̄k =

�k,k−1X̂k−1 of estimated state vector X̂k−1 is

VX̄k
= X̂k − X̄k = X̂k − �k,k−1X̂k−1 (8)

where VX̄k
is the residual vector of predicted state vector.

Considering the estimate of the systematic error, the error 
equation for the state prediction from the kinematic model may 
be written as

V̄′̄
Xk

= X̂k − �k,k−1X̂k−1 − ŝk (9)

where V̄′̄
Xk

is the residual vector of predicted state vector X̄k in 
the presence of the systematic error, which is called the predicted 
residual vector, and ŝk is the estimate of sk .

Accordingly, the error equation for the observation model is

Vk = HkX̂k − Zk (10)

where Vk is the residual vector of the observation vector.
Considering the estimate of observation model’s systematic er-

ror, the error equation for the observation model may be written 
as

V′
k = HkX̂k − Zk − ûk (11)
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