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Unlike the classical variational method to design the neighboring optimal control (NOC) by minimizing 
the second variation of cost functional, this paper, from a geometric point of view, presents a parametric 
approach to establish the NOC for the problem of fixed-time multi-burn orbital transfers. The key 
idea of the proposed approach is to construct a parameterized family of neighboring extremals around 
a reference one. By analyzing the canonical projection of the parameterized family, a geometric 
interpretation is given to show that, even though the gain matrix for the NOC is not explosive, it is 
impossible to construct the NOC for the multi-burn problem if conjugate points occur at switching times. 
Then, through deriving the Taylor series expansion of the parameterized extremals, the neighboring 
optimal feedback not only on thrust direction but also on switching times is readily devised and the 
procedure for computing the gain matrix is presented. Moreover, a scheme for performing the NOC 
is proposed such that the typical singularity when approaching the final time is avoided. Finally, the 
development of this paper is illustrated by two optimal multi-burn orbital transfer problems.

© 2016 Elsevier Masson SAS. All rights reserved.

1. Introduction

The NOC is one of the most important practical applications of 
optimal control theory as it is fundamental for the neighboring op-
timal feedback guidance, a well-known NOC-based guidance. As a 
by-product of deriving the second order conditions (SOC) for op-
timality, the NOC has been generally derived by minimizing the 
second variation of cost functional; the references include the pi-
oneering work in [1–5] followed by the more recent work in, e.g., 
[6–8]. From the variational point of view, the NOC-based guidance 
for orbital transfers has received quite an extensive treatment (see, 
e.g., [9–12]). In [9–11], a standing assumption is that the optimal 
thrust function is continuous. In [12], the NOC for the aeroas-
sisted transfer was investigated. However, to establish the NOC for 
bang–bang control problems is not a trivial task. Once the opti-
mal thrust is bang–bang, the corresponding NOC consists not only 
of the feedback on thrust direction but also of that on switching 
times. Indeed, the NOC for bang–bang control problem has been 
studied in the literature (see, e.g., [13–15]). In [13] by Mcintyre, to 
derive the linear feedback on switching times, a rescaling of time 
variable was used to compensate for the presence of initial errors 
and disturbing forces. Then, Foerster and Flügge-Lotz [14] extended 
the result of Mcintyre to the problem of controlling the attitude 
of satellite. Using a multiple shooting technique, an iterative algo-
rithm for computing the NOC of general optimal control problem 
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with both control and state constraints has been developed in [16], 
which was then applied to a space shuttle guidance in [17]. To the 
author’s knowledge, the most relevant work about the NOC for the 
multi-burn problem is the paper [15] by Kornhauser and Lion, who 
established an accessory minimum problem (AMP) and derived the 
NOC by solving the AMP. More recently, Chuang et al. [18] studied 
the NOC of each burn arc without considering the multi-burn tra-
jectory as a whole such that a sub-optimal guidance scheme was 
developed.

Unlike the various methods developed or used in [13–15], this 
paper aims to present a compact approach to derive the NOC for 
multi-burn problem. The key idea of the proposed approach is to 
parameterize the terminal Lagrangian manifold, defined by the ter-
minal boundary and the corresponding transversality conditions, 
such that a parameterized family of neighboring extremals around 
a reference one is constructed. First, by analyzing the canonical 
projection of the parameterized family of extremals, the disconju-
gacy conditions (or no-conjugate-point conditions) for the fixed-
time multi-burn problem are represented, recalling that conjugate 
points may occur not only between but also at switching times. 
According to the Shadow Price Lemma in [19,20], the disconjugacy 
conditions, when met, are sufficient for local optimality provided 
that each switching point of the reference extremal is regular (cf. 
Theorem 1).

It is worth mentioning that the existence of neighboring ex-
tremals is a prerequisite to establish NOC. For smooth extremals, 
the existence of neighboring extremals is related to the classical 
Jacobi necessary condition [3,4]. In fact, the gain matrix for NOC is 
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explosive once the Jacobi necessary condition is violated. However, 
as far as the author knows, the prerequisites for the existence of 
neighboring extremals around a bang–bang reference one have not 
been analyzed in the literature. In this paper, a geometric interpre-
tation is presented to show that, even though the gain matrix for 
the NOC is not explosive, it is still impossible to construct the NOC 
for the multi-burn problem if conjugate points occur at switch-
ing times; that generalizes the result of the classical variational 
method for smooth extremals (see, e.g., [3,4]).

Assuming the disconjugacy conditions are satisfied along the 
reference extremal, as shall be shown, the first order term of the 
Taylor series expansion of costate is a multiplication of a gain ma-
trix and the deviation of the state from the reference trajectory. 
Since the Pontryagin maximum principle (PMP) [21] gives a nat-
ural feedback on control, the NOC for the multi-burn problem is 
then readily devised in the present paper. Moreover, the numeri-
cal procedure for computing the gain matrix is derived, indicating 
that the gain matrix is discontinuous at switching times. A typical 
issue in the NOC-based guidance is that the gain matrix is singular 
when approaching the final time (see, e.g., [4,7,8]). By proposing a 
scheme for performing the NOC in this paper, such singularity is 
readily avoided.

The present paper is organized as follows. In Sect. 2, the opti-
mal multi-burn orbital transfer problem is formulated. In Sect. 3, 
a parameterized family of neighboring extremals around a refer-
ence one is constructed. In Sect. 4, the NOC is devised by deriving 
the first-order term of the Taylor series expansion of the parame-
terized extremals. In Sect. 5, the numerical procedure for comput-
ing the gain matrix is presented. Then, a scheme for performing 
the NOC is proposed in Sect. 6. In Sect. 7, to illustrate the develop-
ment of this paper, two finite-thrust fuel-optimal orbital transfers 
are computed and Monte Carlo tests are performed to test the 
NOC.

2. Optimal control problem

Consider the spacecraft as a mass point. The state x ∈ R
n

(n = 7) consists of the position vector r ∈ R
3, the velocity vector 

v ∈R
3, and the mass m ∈R, i.e., x = [rT , v T , m]T . Then the motion 

of the spacecraft in an inertial Cartesian coordinate is governed by

ẋ(t) = f (x(t),ρ(t),τ (t)) := f 0(x(t)) + ρ(t) f 1(x(t),τ (t)), (1)

with

f 0(x) =
⎡
⎣ v

−μr/‖ r ‖3

0

⎤
⎦ and f 1(x,τ ) =

⎡
⎣ 0

umaxτ/m
−βumax

⎤
⎦ ,

where the notation “‖ ·‖” denotes the Euclidean norm, μ = 3.986 ×
108 km3/s2 is the Earth gravitational constant (the multiplication 
of the universal gravitational constant and the mass of the Earth), 
umax > 0 is the maximum magnitude of thrust, β > 0 is deter-
mined by the specific impulse of the engine, ρ ∈ [0, 1] is the nor-
malized thrust magnitude, and τ ∈ S

2 is the unit vector of thrust 
direction on each burn arc. For the sake of notational clarity, let 
X ⊂ R

n be the admissible set of x. The performance index of the 
minimum-propellant problem is equivalent to

J =
t f∫

0

ρ(t)dt, (2)

where t f > 0 is the terminal time that is considered fixed in this 
paper. The initial state is fixed, i.e., x(0) = x0, and the final state 
x(t f ) takes values in

M := {x ∈ X | φ(x) = 0}, (3)

where φ : X → R
l (l ≤ n is a positive integer) is a twice continu-

ously differentiable function. According to [22], the controllability 
of the system in Eq. (1) holds in an appropriate subregion of X for 
every umax > 0.

Define the costate of x by p = [pT
r , pT

v , pm] ∈ T ∗
xX where pr , 

pv , and pm are the costate variables associated with r , v , and m, 
respectively. Note that p is a row vector and that pr and pv are 
column vectors. As the abnormal solutions have been ruled out in 
[23], the Hamiltonian function H can be defined as

H = p f 0(x) + ρp f 1(x,τ ) − ρ =: H0 + ρH1. (4)

According to the PMP [21], the optimal thrust direction is along 
the direction of the primer vector pv [24], i.e.,

τ = pv/‖pv‖ if ‖pv‖ �= 0. (5)

Substituting Eq. (5) into Eq. (4), we have that the switching func-
tion

H1 := ‖pv‖
m

umax − pmβumax − 1

determines the switching between burn and coast arcs:

ρ =
{

1 H1 > 0,

0 H1 < 0.
(6)

Singular thrust arcs (0 < ρ < 1) are not considered here since they 
have been shown to be non-optimal in general [25]. Note that the 
optimal control variables are functions of state and costate vari-
ables. The state and costate are governed by{

ẋ(t) = ∂ H
∂ p (x(t), p(t)),

ṗ(t) = − ∂ H
∂x (x(t), p(t)),

(7)

and the transversality condition is

p(t f ) = ν∇φ(x(t f )), (8)

where the time-independent row vector ν ∈ (Rl)∗ denotes La-
grangian multipliers. Note that the transversality condition indi-
cates p(t f ) ⊥ Tx(t f )M.

3. Parameterization of neighboring extremals

Hereafter, we denote by (x(·), p(·)) : [0, t f ] → T ∗X the solu-
tion of Eq. (7) with the maximum conditions in Eqs. (5), (6) sat-
isfied. Such a solution (x(·), p(·)) on [0, t f ] is said an extremal. 
Furthermore, we denote by (x̄(·), p̄(·)) on [0, t f ] the reference (or 
nominal) extremal which satisfies the boundary and transversality 
conditions: x̄(0) = x0, x̄(t f ) ∈M, and p̄(t f ) ⊥ T x̄(t f )M.

Definition 1 (Neighboring extremals). Let W ⊂ T ∗X be a small 
tubular neighborhood of the reference extremal (x̄(·), p̄(·)) on 
[0, t f ]. Then, we say every extremal (x(·), p(·)) on [0, t f ], with the 
final conditions: x(t f ) ∈ M and p(t f ) ⊥ Tx(t f )M, is a neighboring 
extremal of the reference one if (x(·), p(·)) on [0, t f ] lies in W .

Note that the initial point of every neighboring extremal is not 
restricted and that the final point satisfies the boundary condition 
in Eq. (3) and the corresponding transversality condition in Eq. (8). 
In the next paragraph, the neighboring extremals will be parame-
terized.

First of all, we make a regular assumption on the final con-
straint function.

Assumption 1. The matrix ∇φ(x̄(t f )) is of full rank.
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