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This paper investigates a velocity-free finite-time attitude control scheme for a rigid spacecraft with 
actuator saturation and external disturbances. Initially, a finite-time observer is designed to compensate 
the unknown angular velocity information. With the estimated values, a finite-time controller is further 
developed under which the time-varying reference attitude trajectory can be tracked precisely. Moreover, 
input saturation problem is solved by adaptive method. Rigorous Lyapunov-based analysis shows that the 
states of the closed-loop system converge to a small neighborhood of the origin in finite time. Finally, 
the dynamic performance of attitude control system is presented by numerical simulation examples and 
the superiority of the finite-time control scheme is verified.

© 2017 Published by Elsevier Masson SAS.

1. Introduction

Attitude control is a fundamental issue for spacecraft maneu-
vering, which has drawn tremendous attention during the last 
decades. Due to its inherent nonlinear dynamic characteristics and 
the environmental factors, varieties of modern control approaches 
have been applied to improve the performance of attitude control 
systems [1–4]. However, most of the existing algorithms require 
full-state measurements, which is not easy to meet in practical 
engineering. Thus output feedback control and observer-based con-
trol scheme are more preferred. In [5], adaptive attitude tracking 
control without angular velocity measurements is discussed for a 
rigid spacecraft. In [6], a velocity filter is constructed and adap-
tive method is employed for dealing with the mismatch between 
the actual and estimated parameters. By using an approximate-
differentiation filter, the controller for spacecraft relative rotation 
is designed only relay on the attitude measurements in [7], where 
practical asymptotic stability is proved for the closed-loop system. 
Based on adaptive output feedback, the attitude control laws are 
proposed for a rigid spacecraft with consideration of model uncer-
tainties and external disturbances in [8].

Practically speaking, actuation limit does exist due to the phys-
ical and mechanical factors. The ignorance of such phenomenon 
would lead to unexpected result, which might even threaten sys-
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tem stability. A considerable amount of work has been dedicated to 
solve actuator saturation [9–12]. In [10], the anti-windup scheme 
is adopted to handle input constraints for attitude control system. 
In [11], input saturation is explicitly addressed in the presence of 
parametric uncertainties and external disturbances. Furthermore, 
control algorithm for the rigid spacecraft with consideration of 
fault-tolerant and input saturation is discussed in [12]. Meanwhile, 
effort has been put on studying control constraint problem in the 
absence of velocity measurements. A bounded controller combined 
with a filter is constructed for the fully actuated Euler–Lagrange 
systems without velocities information in [13], where hyperbolic 
tangent function is used to solve input saturation. Similar method 
is employed on double-integrator dynamics in [14], and the upper 
bound of the proposed control law is independent of the number 
of individual’s neighbors.

Nevertheless, most of the literatures only ensure asymptotical 
stability of the closed-loop systems, which implies exact conver-
gence is not guaranteed in finite time. Control strategies with rapid 
response and strong robustness are more desirable for guaran-
teeing excellent system performance. Under such a circumstance, 
finite-time control theory has been a favorable and hit topic ever 
since it was put forward. Attempts have been made in [15–17], 
where homogeneous theory has become a common tool for deriv-
ing finite-time control algorithms. Terminal sliding mode control 
is an alternative method to achieve finite-time stability. In [18], 
a terminal sliding mode (TSM) is proposed for single-input single-
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output plant. However, the singularity problem limits the applica-
tion of TSM. As a result, subsequent extensions have been carried 
out to overcome this weakness [19,20]. In the area of spacecraft 
control, finite-time control strategies have been extensively studied 
and widely applied [21–24]. In [21], a global finite-time controller 
is derived for spacecraft attitude stabilization by homogeneous
method. Terminal sliding mode control is adopted on spacecraft 
formation flying [22]. In [23], a robust sliding mode controller is 
designed, thus the spacecraft can track its desired attitude in finite 
time. To compensate the angular velocity, a dynamic finite-time 
observer is employed and a finite-time control law is designed for 
the rigid spacecraft [24].

It is worthwhile to mention that to guarantee fast convergence 
rate, the control output always reaches large magnitude, especially 
within the initial phase of system response. Thus the researchers 
have put effort on investigating the saturated control algorithms 
with finite-time convergence rate. In [25], a bounded distributed 
finite-time controller is developed based on double-integrator dy-
namics under a detailed–balanced topology. In [26], homogeneous
theory is adopted to derive a proportional-derivative-type finite-
time attitude stabilization law with a saturated function to ensure 
bounded input. A finite-time distributed attitude control law with 
actuator constraint is proposed for spacecraft formation by em-
ploying fast terminal sliding mode and Chebyshev neural network 
in [27]. However, full-state feedback scheme is used in [26] and 
[27]. To relax the requirement of angular velocity, a finite-time at-
titude coordinated controller combined with a filter is designed by 
using homogeneous theory in [28]. Although the input saturation 
is addressed explicitly, only static desired attitude has been con-
sidered. It is not straightforward to extend the control algorithm 
in [28] to time-varying reference attitude trajectory case. So far, 
constructing bounded finite-time control schemes via output feed-
back remains to be an open problem, especially for the attitude 
tracking problem.

Inspired by the realities stated above, this paper aimed at de-
signing a velocity-free finite-time attitude tracking control law 
with consideration of actuator saturation and external distur-
bances. Initially, we propose a finite-time observer by which the 
lack of angular velocity measurements is compensated. Then, 
adding a power integrator technique is adopted to design the 
finite-time control law. Additionally, adaptive method is used to 
solve input saturation problem. The remainder of this paper is or-
ganized as follows: In Section 2, the mathematical model of the 
rigid spacecraft and several useful definitions and lemmas are in-
troduced. The control algorithm is addressed with rigorous proof 
in Section 3. Section 4 demonstrates the efficiency of the proposed 
control law by presenting numerical simulation results. Conclu-
sions and remarks are made in Section 5.

2. Dynamics and mathematical preliminaries

2.1. Spacecraft attitude dynamics and kinematics

The attitude kinematics and dynamics of a rigid spacecraft is 
modeled as [29]

q̇0 = −1

2
qTω (1)

q̇ = Q (q)ω (2)

J ω̇ + ω× Jω = u + d (3)

where q̄ = [q0, qT]T ∈ �4 is the quaternion denoting the rotation 
from the body frame to the inertial frame, with q0 denotes the 
scalar part and q ∈ �3 the vector part satisfying q2

0 + qTq = 1. 
ω ∈ �3 denotes the angular velocity of the spacecraft with re-
spect to the inertial frame expressed in the body frame. The matrix 

Q (q) ∈ �3×3 is defined as Q (q) = 1
2 (q0 I 3×3 + q×). J ∈ �3×3 is 

the inertia matrix, u ∈ �3 and d ∈ �3 denote the control torque 
and external disturbances acting on the spacecraft, respectively. 
Here, the operator a× represents a skew–symmetric matrix acting 
on the vector a = [

a1 a2 a3
]T

and has the following form

a× =
⎡
⎣ 0 −a3 a2

a3 0 −a1

−a2 a1 0

⎤
⎦ (4)

To address attitude tracking problem, a time-varying reference 
attitude trajectory is described by unit quaternion q̄d = [qd0, qT

d]T ∈
�4 and desired angular velocity ωd ∈ �3. The attitude error
q̄e ∈ �4 and angular velocity error ωe ∈ �3 are introduced, which 
are defined as q̄e = q̄−1

d � q̄ and ωe = ω− Reωd . In addition, � rep-
resents the quaternion multiplication and Re = (q2

e0 − qT
e qe)I 3×3 +

2qeqT
e − 2qe0q×

e represents the rotation matrix. As for Re , it has 
that ‖Re‖ = 1, Ṙe = −ω×

e Re . Correspondingly, we obtain that

q̇e0 = −1

2
qT

eωe (5)

q̇e = Q (qe)ωe (6)

J ω̇e = u + d − (ωe + Reωd)
× J (ωe + Reωd)

− J
(
ω×

e Reωd − Reω̇d
)

(7)

where Q (qe) = 1
2 (qe0 I 3×3 + q×

e ) and ‖ Q (qe)‖ = 1
2 holds. Let v1 =

Reωd , v2 = Reω̇d , F (qe) = Q (qe)
−1, and g(qe) = Q (qe) J −1, then 

Eqs. (1)–(3) can be rewritten as

q̇e = ve (8a)

v̇e = f (qe, ve) + g(qe)u + d∗ (8b)

where ve is introduced as the first derivative of the vector part of 
attitude error quaternion, f (qe, ve) = Q̇ e F e ve − Q e J −1{(F e ve +
v1)

× J (F e ve + v1) − J [(F e ve)
× v1 − v2]} and d∗ = g(qe)d. In the 

following, F (qe) and Q (qe) are written into F e and Q e for the 
sake of brevity. To facilitate the control algorithm design, the fol-
lowing assumptions are made.

Assumption 1. The inertia tensor of the spacecraft is a symmetric 
positive definite matrix, which is precisely known. It is reasonable 
to suppose that ‖ J‖ ≤ J̄ and ‖ J −1‖ ≤ μ J with J̄ and μ J being 
positive scalars.

Assumption 2. The external disturbance d is assumed to be 
bounded by a known positive scalar d̄, i.e. ‖d‖ ≤ d̄. Noticing that 
‖g(qe)‖ = ‖ Q e J −1‖ ≤ 1

2 μ J , which leads to ‖g(qe)d‖ ≤ 1
2 μ J d̄. 

Thus, it has that ‖d∗‖ ≤ ϕd with ϕd = 1
2 μ J d̄ being a positive scalar.

Remark 1. To ensure the existence of F e , the matrix Q e should be 
invertible, which implies that det( Q e(qe)) = 1

2 qe0(t) �= 0 for t ≥ 0. 
Thus, the initial state and control strategy should be chosen to 
guarantee qe0(t) �= 0 for all time. In fact, the initial attitudes can 
be always selected as qe0(t) �= 0 and the control parameters are 
tunable to ensure qe0(t) �= 0 for t > 0. So this remark is a mild and 
reasonable restriction.

2.2. Definitions and lemmas

Definition 1. (See [30].) Consider the following system

ẋ = f (x), f (0) = 0, x ∈ Rn (9)
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