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Radial basis function (RBF) interpolation is a robust mesh deformation method, which has the main 
property of interpolating the displacements of mesh boundary points to the internal points through RBF. 
However, this method is computationally intensive, especially for problems with large number of grids. 
To handle this problem, a data reduction RBF method has been developed in literature. By using greedy 
algorithm, only a small subset of mesh boundary points is selected as the control point set to perform 
mesh deformation. Subsequently, much few boundary points are needed to approximate the shape of 
geometry and the computational cost of data reduction RBF method is much lower than the original RBF. 
Despite the referred benefits, this method incurs the loss of geometry precision especially at boundaries 
where large deformation happens, which results into the decline of deformation capacity. To further 
improve the data-reduction RBF method, a novel dynamic-control-point RBF (DCP-RBF) mesh deformation 
method is proposed in this paper, which employing a dynamic set of control points. In each time step 
of mesh deformation, the neighboring boundary point near the cell with the worst quality is added into 
the control point set, while the neighboring control point near the cell with the best quality is removed 
from the control point set. In this way, it is ensured that there are more control points placed around 
the region with lower mesh quality, where usually large deformation occurs. Consequently, in contrast 
with the data reduction RBF method, DCP-RBF permits significantly larger mesh deformation with a quite 
small increase in computational cost. The superiority of the proposed DCP-RBF method is demonstrated 
through several test cases including both 2D and 3D dynamic mesh applications.

© 2017 Elsevier Masson SAS. All rights reserved.

Introduction

For CFD codes applied to engineering problems, such as aeroe-
lastics, control surface movement and optimization design, motion 
and deformation of the computational domain frequently occurs. 
Therefore, it is preferable for adapting the mesh to the changes of 
the computational domain shape. The literature review shows that 
mesh deformation methods can be broadly classified into two cat-
egories: algebraic methods and partial differential equation (PDE) 
methods [1]. Algebraic methods include spring analogy method 
[2–4], transfinite interpolation (TFI) [5], inverse distance weighting 
interpolation (IDW) [6] and RBF interpolation. The spring analogy 
method, originally introduced by Batina [3], models each edge of 
triangle cell of the unstructured mesh by a spring, and the length 
of the edge is related to the stiffness. Although this method is 
mathematically simple, mesh-connectivity information is required, 
and a set of equations must be solved, of which the dimension is 
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equal to the number of all the mesh points. Obviously the method 
is very expensive for large scale problems. It also tends to pro-
duce poor quality mesh when large deformation happens. To over-
come this shortcoming, an additional torsional spring is attached 
to each vertex of the spring system to prohibit the interpenetra-
tion of neighboring triangles [4], and consequently lead to larger 
amount of calculations. The TFI method interpolates the displace-
ments of mesh boundary points to the internal mesh points along 
the mesh lines. It has high efficiency but is only applicable to 
structured mesh. The IDW method is a simple and straightforward 
method [6]. Without solving any equation system, the boundary 
mesh point displacements are directly interpolated to the interior 
of the flow domain, and the value of weighting function is di-
rectly related to the distance between the mesh interior point and 
boundary point. Classified into PDE methods, the linear elasticity 
method is robust, and mesh deformation is treated as analogous 
to a linear elasticity problem [7,8]. During the process, a linear 
elasticity equation should be solved. Much like the spring analogy 
method, the linear elasticity method involves solving an equation 
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system including all the mesh points, so it is also computation-
intensive.

RBF interpolation method was first presented by de Boer et 
al. [9] in 2007. As a point-by-point mesh deformation approach, 
RBF method requires no mesh-connectivity information and thus 
is convenient for parallelization. The method is also suitable for 
both unstructured and structured mesh. Compared with the spring 
analogy method, RBF method can handle significantly larger defor-
mation and maintain good mesh quality and geometric accuracy, 
in other words, RBF method is robust. However, for large prob-
lems, RBF method is also expensive since a linear equation system 
needs to be solved, of which the dimension is equal to the num-
ber of mesh boundary points. Nowadays, RBF mesh deformation 
method has been widely used in many fields, such as aircraft con-
trol surface deflection [10], flapping wings and rotor hover simu-
lation [11–13], aeroelastics and fluid–structure interaction [14,15], 
and shape optimization design [16–19]. Some research efforts have 
been focused on the parallelization of RBF method as well [20,21].

To reduce the cost of RBF method, in the work of Rendall and 
Allen [22], only a subset of boundary mesh points is selected as 
the control point set to perform mesh deformation. During the 
process of mesh deformation, an equation system involving all 
the control points should be solved, and the computational cost 
of the system tends to have the magnitude of O(N3), where N
is the number of control points, so in contrast with the pure 
form RBF method, the data-reduction algorithm is computationally 
much cheaper. Data-reduction RBF based on the greedy algorithm 
was investigated and a comparison was made among three differ-
ent error functions used in the algorithm [23]. Sheng and Allen 
[1] investigated two greedy algorithms to reduce the number of 
control points, and then developed a robust, efficient and accu-
rate RBF method. Meanwhile, some recent research efforts focus on 
easing the stringent requirement of solving the equation system. 
Gumerov and Duraiswami [24] proposed a fast radial basis func-
tion interpolation via the preconditioned Krylov iteration, and the 
overall computational cost is reduced to O(N log N). Coulier and 
Darve [25] proposed an efficient RBF mesh deformation method by 
means of the inverse fast multipole method and the computational 
cost scaling is only O(N). There are also some other research work 
for the improvement of efficiency in the literature, see Ref. [26]
and [27].

For the pure data-reduction RBF method, as a result of the re-
duction of control points, only a small subset of the boundary 
points is selected as control point set, so the boundary geometry 
precision declines and the interpolation error is brought in. Then 
the robustness is weakened and some correction will be needed. 
T. Gillebaart et al. [28] proposed an “adaptive” RBF mesh deforma-
tion method. For the boundary points not included in the control 
points subset, an explicit boundary correction is applied to ob-
tain the exact boundary representation. A correction function is 
employed in the correction step to obtain the correctional displace-
ment of each single internal point. Wang et al. [29] proposed a 
multilevel subspace RBF interpolation method based on a “double-
edged” greedy algorithm. This method is computationally efficient 
and preserves orthogonality.

To further strengthen the robustness of data reduction RBF 
method, in the present work, a dynamic-control-point RBF method 
is proposed. The basic procedure can be divided into two steps. 
First, before mesh deformation, a subset of boundary points is se-
lected as the initial control point set. Then at each time step, after 
mesh deformation, the neighboring boundary point near the cell 
with the worst quality is added into the control point set, and 
the neighboring control point near the cell with the best quality 
is removed from the control point set. In this way, it is ensured 
that there are more control points placed around the region with 
lower mesh quality, where usually large deformation occurs. As 

a result, significantly larger mesh deformation is allowed with a 
very small increase in computational cost, comparing with the 
data-reduction algorithm. Several test cases as representatives of 
dynamic mesh applications are used to demonstrate the superior-
ity of this method.

1. RBF mesh deformation and data-reduction algorithm

The term RBF refers to a series of functions with its general 
form as �(x) = ϕ(‖x‖), where ‖x‖ denotes the Euclidean distance. 
So the basic variable of RBF is spatial distance. Generally, the 
distance is normalized through a value r called compact radius: 
ξ = ‖x‖/r, and

�r = ϕ(ξ) =
{

f (ξ) 0 ≤ ξ ≤ 1
0 ξ > 1

(1)

The influence domain of a control point is inside a circle (for 
two-dimensional space) or a ball (for three-dimensional space), of 
which the center is the control point and the radius is the compact 
radius. The general form of RBF interpolation can be expressed as:

F (r) =
nb∑
j=1

α jϕ
(‖r − rb j ‖

) + p(r) (2)

where F (r) is the interpolation function, nb is the number of 
control points used in the interpolation, and α j is the weight-
ing coefficient of the jth control point. The general form of RBF 
is ϕ(‖r − rb j ‖), where ‖r − rb j ‖ is the distance between position 
vector r of the internal mesh point and position vector rb j of the 
jth control point. The p(r) is a first-order polynomial. There are 
additional requirements

nb∑
j=1

α jq(rb j ) = 0 (3)

for all polynomial q with a degree no more than that of p. As the 
result of using a linear polynomial, rigid body translations are ex-
actly recovered [9]. There are many types of RBFs, for example, 
Wendland’s C2 [30] is usually selected to perform mesh deforma-
tion:

f (ξ) = (1 − ξ)4(4ξ + 1) (4)

With the displacements of the control points (namely the 
boundary mesh points), the displacements of internal mesh points 
can be interpolated. The interpolation weighting coefficient α j and 
the coefficients of each item of polynomial p(r) depend on the 
consistency of interpolation of mesh boundary points. In other 
words, the interpolated function values at all the control points 
are recovered exactly, which are equal to the boundary mesh dis-
placements. So Eq. (5) must be satisfied:[

M Pb
PT

b 0

][
α
β

]
=

[
db
0

]
(5)

where the square matrix M can be expressed as:

M =
⎡
⎢⎣

ϕb1b1 ϕb1b2 · · · ϕb1bnb
...

...
. . .

...

ϕbnb b1 ϕbnb b2 · · · ϕbnb bnb

⎤
⎥⎦ (6)

and there is ϕbi b j = ϕ(‖rbi − rb j ‖), namely the RBF based on the 
distance between the ith and jth control point.

Pb is a nb × 4 matrix containing the coordinates of the control 
points:
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